On gauge-dependence of gravitational waves from $1^{\text {st. }}$-order phase transitions

Eibun Senaha (ibs-CTPU)
April 27, 2019@CCNU

2019 CCNU - cfa@USTC Junior Cosmology Symposium
based on
Cheng-Wei Chiang (Natl Taiwan U), E.S., arXiv: 1707.06765 (PLB)

Outline

- Introduction
- Gauge-dependence (ξ) of the effective potential
- Impact of ξ on $1^{\text {st }}$-order phase transition in classical scale-inv. $U(1)$ models: $T_{N}, G W$
- Summary

Introduction

- $1^{\text {st }}$-order phase transition (PT) has interesting physical implications:
Electroweak Baryogenesis, Gravitational Waves (GW), etc.
- Mostly, effective potential is used for such calculations.

problem

- Effective potential inherently depends on gauge-fixing parameter (ξ).
- Nucleation temperature (T_{N}), GW can be ξ dependent.
Q. How (numerically) serious?
$1^{\text {stt}}$-order PT

Thorny problem

Effective potential is gauge dependent!!

Jackiw, PRD9,1686 (1974)
Because
$V_{\text {eff }} \ni$

1PI diagrams only
Leg corrections are needed to remove the ξ dependence.

Gauge dependence of $V_{\text {eff }}$

Fig. taken from H. Patel and M. Ramsey-Musolf, JHEP,07(2011)029

- Generally, VEV depends on a gauge parameter ξ
- Energies at stationary points do not depend on ξ

$$
\frac{\partial V_{\mathrm{eff}}}{\partial \xi}=C(\varphi, \xi) \frac{\partial V_{\mathrm{eff}}}{\partial \varphi}
$$

(Nielsen-Fukuda-Kugo (NFK) identity)

Abelian-Higgs model

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left|D_{\mu} \Phi\right|^{2}-V\left(|\Phi|^{2}\right)
$$

$$
\begin{aligned}
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, \quad D_{\mu} \Phi=\left(\partial_{\mu}-i e A_{\mu}\right) \Phi \\
V\left(|\Phi|^{2}\right) & =-\nu^{2}|\Phi|^{2}+\frac{\lambda}{4}|\Phi|^{4}, \quad \Phi(x)=\frac{1}{\sqrt{2}}(v+h(x)+i G(x))
\end{aligned}
$$

gauge boson: $D_{\mu \nu}^{-1}(k)=\left(-k^{2}+\bar{m}_{A}^{2}\right) \Pi_{\mu \nu}^{T}(k)+\frac{1}{\xi}\left(-k^{2}+\xi \bar{m}_{A}^{2}\right) \Pi_{\mu \nu}^{L}(k)$,

$$
\Pi_{\mu \nu}^{T}(k)=\left(g_{\mu \nu}-\frac{k_{\mu} k_{\nu}}{k^{2}}\right), \quad \Pi_{\mu \nu}^{L}(k)=\frac{k_{k} k_{\nu}}{k^{2}},
$$

NG boson: $\quad \Delta_{G}^{-1}(k)=k^{2}-\bar{m}_{G}^{2}-\xi \bar{m}_{A}^{2}$

$$
\text { ghost: } \quad \Delta_{c}^{-1}(k)=i\left(k^{2}-\xi \bar{m}_{A}^{2}\right)
$$

Abelian-Higgs model

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left|D_{\mu} \Phi\right|^{2}-V\left(|\Phi|^{2}\right)
$$

$$
\begin{aligned}
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, \quad D_{\mu} \Phi=\left(\partial_{\mu}-i e A_{\mu}\right) \Phi \\
V\left(|\Phi|^{2}\right) & =-\nu^{2}|\Phi|^{2}+\frac{\lambda}{4}|\Phi|^{4}, \quad \Phi(x)=\frac{1}{\sqrt{2}}(v+h(x)+i G(x))
\end{aligned}
$$

gauge boson: $\left.\left.D_{\mu \nu}^{-1}(k)=\left(-k^{2}+\bar{m}_{A}^{2}\right) \Pi_{\mu \nu}^{T}(k)+\frac{1}{\tilde{\xi}}\right\}-k^{2}+\xi \overline{\xi n}_{A}^{2}\right) \Pi_{\mu \nu}^{L}(k)$,

$$
\Pi_{\mu \nu}^{T}(k)=\left(g_{\mu \nu}-\frac{k_{\mu} k_{\nu}}{k^{2}}\right), \quad \Pi_{\mu \nu}^{L}(k)=\frac{k_{\mu} k_{\nu}}{k^{2}},
$$

NG boson: $\quad \Delta_{G}^{-1}(k)=k^{2}-\bar{m}_{G}^{2}-\xi \bar{m}_{A}^{2}$

$$
\text { ghost: } \quad \Delta_{c}^{-1}(k)=i\left(k^{2}-\left(m_{A}^{2}\right)\right.
$$

1-loop effective potential

e.g., Abelian-Higgs model

$\mu^{\epsilon} V_{1}^{A+G+c}(\varphi, \xi)=-\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}}\left[(D-1) \ln \left(-k^{2}+\bar{m}_{A}^{2}\right)+\ln \left(-k^{2}+\xi \bar{m}_{A}^{2}\right)\right.$

$$
\begin{gathered}
+\ln \left(-k^{2}+\xi \bar{m}_{A}^{2}\right)+\ln \left(1+\frac{\bar{m}_{G}^{2}}{-k^{2}+\xi \bar{m}_{A}^{2}}\right) \\
\left.-2 \ln \left(-k^{2}+\xi \bar{m}_{A}^{2}\right)\right]
\end{gathered}
$$

ξ-dependence disappears at $\bar{m}_{G}^{2}(\varphi=v)=0,\left.\quad \frac{\partial V_{0}}{\partial \varphi}\right|_{\varphi=v}=0$
NFK identity at 1-loop level:

$$
\frac{\partial V_{1}(\varphi, \xi)}{\partial \xi}=C(\varphi, \xi) \frac{\partial V_{0}(\varphi)}{\partial \varphi}
$$

1-loop effective potential

e.g., Abelian-Higgs model

 gauge boson$$
\begin{array}{r}
\mu^{\epsilon} V_{1}^{A+G+c}(\varphi, \xi)=-\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}}\left[\begin{array}{r}
(D-1) \ln \left(-k^{2}+\bar{m}_{A}^{2}\right)+\ln \left(-k^{2}+\xi \bar{m}_{A}^{2}\right) \\
\\
\quad+\ln \left(-k^{2}+\xi \bar{m}_{A}^{2}\right)+\ln \left(1+\frac{\bar{m}_{G}^{2}}{-k^{2}+\xi \bar{m}_{A}^{2}}\right) \\
\\
\left.\quad-2 \ln \left(-k^{2}+\xi \bar{m}_{A}^{2}\right)\right] \\
=-
\end{array}\right) \\
\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}}\left[(D-1) \ln \left(-k^{2}+\bar{m}_{A}^{2}\right)+\ln \left(1+\frac{\bar{m}_{G}^{2}}{-k^{2}+\xi \bar{m}_{A}^{2}}\right)\right]
\end{array}
$$

ξ-dependence disappears at $\bar{m}_{G}^{2}(\varphi=v)=0,\left.\quad \frac{\partial V_{0}}{\partial \varphi}\right|_{\varphi=v}=0$
NFK identity at 1-loop level:

$$
\frac{\partial V_{1}(\varphi, \xi)}{\partial \xi}=C(\varphi, \xi) \frac{\partial V_{0}(\varphi)}{\partial \varphi}
$$

1-loop effective potential

e.g., Abelian-Higgs model

gauge boson
$\mu^{\epsilon} V_{1}^{A+G+c}(\varphi, \xi)=-\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}}\left((D-1) \ln \left(-k^{2}+\bar{m}_{A}^{2}\right)+\ln \left(-k^{2}+\xi \bar{m}_{A}^{2}\right)\right.$
NG boson $+\ln \left(-k^{2}+\xi \bar{m}_{A}^{2}\right)+\ln \left(1+\frac{\bar{m}_{G}^{2}}{-k^{2}+\xi \bar{m}_{A}^{2}}\right)$
$\left.-2 \ln \left(-k^{2}+\xi \bar{m}_{A}^{2}\right)\right]$

$$
=-\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}}\left[(D-1) \ln \left(-k^{2}+\bar{m}_{A}^{2}\right)+\ln \left(1+\frac{\bar{m}_{G}^{2}}{-k^{2}+\xi \bar{m}_{A}^{2}}\right)\right] .
$$

ξ-dependence disappears at $\bar{m}_{G}^{2}(\varphi=v)=0,\left.\quad \frac{\partial V_{0}}{\partial \varphi}\right|_{\varphi=v}=0$
NFK identity at 1-loop level:

$$
\frac{\partial V_{1}(\varphi, \xi)}{\partial \xi}=C(\varphi, \xi) \frac{\partial V_{0}(\varphi)}{\partial \varphi}
$$

1-loop effective potential

e.g., Abelian-Higgs model

gauge boson
$\mu^{\epsilon} V_{1}^{A+G+c}(\varphi, \xi)=-\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}}\left((D-1) \ln \left(-k^{2}+\bar{m}_{A}^{2}\right)+\ln \left(-k^{2}+\xi \bar{m}_{A}^{2}\right)\right.$
NG boson $+\ln \left(-k^{2}+\xi \bar{m}_{A}^{2}\right)+\ln \left(1+\frac{\bar{m}_{G}^{2}}{-k^{2}+\xi \bar{m}_{A}^{2}}\right)$
ghost
$-2 \ln \left(-k^{2}+\xi \bar{m}_{A}^{2}\right)$

$$
=-\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}}\left[(D-1) \ln \left(-k^{2}+\bar{m}_{A}^{2}\right)+\ln \left(1+\frac{\bar{m}_{G}^{2}}{-k^{2}+\xi \bar{m}_{A}^{2}}\right)\right] .
$$

ξ-dependence disappears at $\bar{m}_{G}^{2}(\varphi=v)=0,\left.\quad \frac{\partial V_{0}}{\partial \varphi}\right|_{\varphi=v}=0$
NFK identity at 1-loop level:

$$
\frac{\partial V_{1}(\varphi, \xi)}{\partial \xi}=C(\varphi, \xi) \frac{\partial V_{0}(\varphi)}{\partial \varphi}
$$

1-loop effective potential

e.g., Abelian-Higgs model

gauge boson

$$
\begin{aligned}
\mu^{\epsilon} V_{1}^{A+G+c}(\varphi, \xi)= & -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}}\left[(D-1) \ln \left(-k^{2}+\bar{m}_{A}^{2}\right)+\ln \left(-k^{2} \bar{m}_{A}^{2}\right)\right. \\
& \text { NG boson }+\ln \left(-k^{2}-\bar{m}_{A}^{2}\right)+\ln \left(1+\frac{\bar{m}_{G}^{2}}{-k^{2}+\xi \bar{m}_{A}^{2}}\right) \\
& \text { ghost } \left.-2 \ln \left(-k^{2} \bar{m}_{A}^{2}\right)\right] \\
= & -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}}\left[(D-1) \ln \left(-k^{2}+\bar{m}_{A}^{2}\right)+\ln \left(1+\frac{\bar{m}_{G}^{2}}{-k^{2}+\xi \bar{m}_{A}^{2}}\right)\right] .
\end{aligned}
$$

ξ-dependence disappears at $\bar{m}_{G}^{2}(\varphi=v)=0,\left.\quad \frac{\partial V_{0}}{\partial \varphi}\right|_{\varphi=v}=0$
NFK identity at 1-loop level:

$$
\frac{\partial V_{1}(\varphi, \xi)}{\partial \xi}=C(\varphi, \xi) \frac{\partial V_{0}(\varphi)}{\partial \varphi}
$$

1-loop effective potential

e.g., Abelian-Higgs model

gauge boson

$$
\left(\begin{array}{rl}
\mu^{\epsilon} V_{1}^{A+G+c}(\varphi, \xi)= & -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}}\left[\frac{(D-1) \ln \left(-k^{2}+\bar{m}_{A}^{2}\right)+\ln \left(-k^{2}+\bar{m}_{A}^{2}\right)}{}\right. \\
& \text { NG boson }+\ln \left(-k^{2}-\bar{m}_{A}^{2}\right)+\ln \left(1+\frac{\bar{m}_{G}^{2}}{-k^{2}+\xi \bar{m}_{A}^{2}}\right)
\end{array}\right] .-2 \ln \left(-k^{2}\left\langle\bar{m}_{A}^{2}\right)\right] .
$$

ξ-dependence disappears at $\bar{m}_{G}^{2}(\varphi=v)=0,\left.\quad \frac{\partial V_{0}}{\partial \varphi}\right|_{\varphi=v}=0$
NFK identity at 1-loop level:

$$
\frac{\partial V_{1}(\varphi, \xi)}{\partial \xi}=C(\varphi, \xi) \frac{\partial V_{0}(\varphi)}{\partial \varphi}
$$

1-loop effective potential

e.g., Abelian-Higgs model

gauge boson

$$
\left.\left(\begin{array}{rl}
\mu^{\epsilon} V_{1}^{A+G+c}(\varphi, \xi)= & -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}}\left[(D-1) \ln \left(-k^{2}+\bar{m}_{A}^{2}\right)+\ln \left(-k^{2}+\bar{m}_{A}^{2}\right)\right. \\
& \text { NG boson }+\ln \left(-k^{2}-\bar{m}_{A}^{2}\right)+\ln \left(1+\frac{\bar{m}_{G}^{2}}{-k^{2}+\xi \bar{m}_{A}^{2}}\right)
\end{array}\right] .-2 \ln \left(-k^{2} \bar{m}_{A}^{2}\right)\right] .
$$

ξ-dependence disappears at $\bar{m}_{G}^{2}(\varphi=v)=0,\left.\quad \frac{\partial V_{0}}{\partial \varphi}\right|_{\varphi=v}=0$
NFK identity at 1-loop level:

$$
\frac{\partial V_{1}(\varphi, \xi)}{\partial \xi}={ }_{C}^{\text {1-loop }}=\frac{\partial V_{0}(\varphi)}{\partial \varphi}
$$

1-loop effective potential

e.g., Abelian-Higgs model

gauge boson

$$
\left(\begin{array}{rl}
\mu^{\epsilon} V_{1}^{A+G+c}(\varphi, \xi)= & -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}}\left[(D-1) \ln \left(-k^{2}+\bar{m}_{A}^{2}\right)+\ln \left(-k^{2}-\bar{m}_{A}^{2}\right)\right. \\
& \text { NG boson }+\ln \left(-k^{2}-\bar{m}_{A}^{2}\right)+\ln \left(1+\frac{\bar{m}_{G}^{2}}{-k^{2}+\xi \bar{m}_{A}^{2}}\right)
\end{array}\right]
$$

ξ-dependence disappears at $\bar{m}_{G}^{2}(\varphi=v)=0,\left.\quad \frac{\partial V_{0}}{\partial \varphi}\right|_{\varphi=v}=0$
NFK identity at 1-loop level:

$$
\frac{\partial V_{1}(\varphi, \xi)}{\partial \xi}=C(\varphi, \xi) \frac{\partial V_{0}(\varphi)}{\partial \varphi} \text { Tree }
$$

Plotting $V_{\text {eff }}=V_{0}+V_{1}$,

No ξ-dependence at $\frac{\partial V_{0}}{\partial \varphi}=0$ but it is no longer a minimum at 1-loop level.

When 1-loop minimization condition is imposed, $\frac{\partial\left(V_{0}+V_{1}\right)}{\partial \varphi}=0$

Energy at $\phi=246 \mathrm{GeV}$ depends on $\xi!!$

1-loop effective potential at $\mathrm{T} \neq 0$

$$
V_{1}(\varphi, \xi ; T)=\sum_{i} \frac{T^{4}}{2 \pi^{2}} I_{B}\left(a_{i}^{2}\right),
$$

where

$$
I_{B}\left(a^{2}\right)=\int_{0}^{\infty} d x x^{2} \ln \left[1-e^{-\sqrt{x^{2}+a^{2}}}\right] .
$$

Using a high-T expansion of $I_{B}\left(a^{2}\right)$, one gets

$$
\begin{aligned}
& V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =\frac{T^{2}}{24}\left(\bar{m}_{h}^{2}+\bar{m}_{G}^{2}+3 \bar{m}_{A}^{2}\right)-\frac{T}{12 \pi}\left[\left(\bar{m}_{h}^{2}\right)^{3 / 2}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{3 / 2}+\left(3-\xi^{3 / 2}\right)\left(\bar{m}_{A}^{2}\right)^{3 / 2}\right] \\
& \quad+\frac{1}{64 \pi^{2}}\left[\bar{m}_{h}^{4} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+3 \bar{m}_{A}^{4}\left(\ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\frac{2}{3}\right)-\left(\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}\right]
\end{aligned}
$$

1-loop effective potential at $\mathrm{T} \neq 0$

$$
V_{1}(\varphi, \xi ; T)=\sum_{i} \frac{T^{4}}{2 \pi^{2}} I_{B}\left(a_{i}^{2}\right),
$$

where

$$
I_{B}\left(a^{2}\right)=\int_{0}^{\infty} d x x^{2} \ln \left[1-e^{-\sqrt{x^{2}+a^{2}}}\right] .
$$

Using a high-T expansion of $I_{B}\left(a^{2}\right)$, one gets

$$
\begin{aligned}
& V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =\frac{T^{2}}{24}\left(\bar{m}_{h}^{2}+\bar{m}_{G}^{2}+3 \bar{m}_{A}^{2}\right)-\frac{T}{12 \pi}\left[\left(\bar{m}_{h}^{2}\right)^{3 / 2}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{3 / 2}+\left(3-\xi^{3 / 2}\right)\left(\bar{m}_{A}^{2}\right)^{3 / 2}\right] \\
& \quad+\frac{1}{64 \pi^{2}}\left[\bar{m}_{h}^{4} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+3 \bar{m}_{A}^{4}\left(\ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\frac{2}{3}\right)-\left(\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}\right] .
\end{aligned}
$$

$V_{\text {eff }}$ at $T \neq 0$ also depends on ξ except " T^{2}-terms".

SM case

[H.Patel, M.Ramsey-Musolf, JHEP,07(2011)029]

SM case

[H.Patel, M.Ramsey-Musolf, JHEP,07(2011)029]

SM case

[H.Patel, M.Ramsey-Musolf, JHEP,07(2011)029]

Classical scale-inv. U(1) model

$S M+U(1)^{\prime} w /$ scale symmetry

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}^{\prime}}-\frac{1}{4} Z_{\mu \nu}^{\prime} Z^{\prime \mu \nu}+\left|D_{\mu} S\right|^{2}-V(H, S)
$$

$$
Z_{\mu \nu}^{\prime}=\partial_{\mu} Z_{\nu}^{\prime}-\partial_{\nu} Z_{\mu}^{\prime}, D_{\mu} S=\left(\partial_{\mu}+i g^{\prime} Q_{S}^{\prime} Z_{\mu}^{\prime}\right) S,
$$

scalar potential

$$
V(H, S)=\lambda_{H}\left(H^{\dagger} H\right)^{2}+\lambda_{H S} H^{\dagger} H|S|^{2}+\lambda_{S}|S|^{4}
$$

singlet scalar field: $\quad S(x)=\frac{1}{\sqrt{2}}\left(v_{S}+h_{S}(x)+i G(x)\right)$
After $U(1)$ is radiatively broken ($\langle S\rangle \neq 0$), EW symmetry is broken if $\lambda_{H S}<0 . \quad m_{h}^{2}=-\lambda_{H S} v_{S}^{2} \longrightarrow-\lambda_{H S}=m_{h}^{2} / v_{S}^{2}=\mathcal{O}\left(10^{-3}\right)$

Classical scale-inv. U(1) model

$S M+U(1)^{\prime} w /$ scale symmetry

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}^{\prime}}-\frac{1}{4} Z_{\mu \nu}^{\prime} Z^{\prime \mu \nu}+\left|D_{\mu} S\right|^{2}-V(H, S)
$$

$$
Z_{\mu \nu}^{\prime}=\partial_{\mu} Z_{\nu}^{\prime}-\partial_{\nu} Z_{\mu}^{\prime}, D_{\mu} S=\left(\partial_{\mu}+i g^{\prime} Q_{S}^{\prime} Z_{\mu}^{\prime}\right) S,
$$

scalar potential

$$
V(H, S)=\lambda_{H}\left(H^{\dagger} H\right)^{2}+\lambda_{H S} H^{\dagger} H|S|^{2}+\lambda_{S}|S|^{4}
$$

singlet scalar field: $\quad S(x)=\frac{1}{\sqrt{2}}\left(v_{S}+h_{S}(x)+i G(x)\right)$
After $U(1)$ is radiatively broken ($\langle S\rangle \neq 0$), EW symmetry is broken if $\lambda_{H S}<0 . \quad m_{h}^{2}=-\lambda_{H S} v_{S}^{2} \longrightarrow-\lambda_{H S}=m_{h}^{2} / v_{S}^{2}=\mathcal{O}\left(10^{-3}\right)$

Classical scale-inv. U(1) model

ξ dependence is different from the massive $U(1)$ model case.

$$
\begin{aligned}
V_{\mathrm{eff}}\left(\varphi_{S}\right)= & \frac{\lambda_{S}}{4} \varphi_{S}^{4}+3 \frac{\bar{m}_{Z^{\prime}}^{4}}{64 \pi^{2}}\left(\ln \frac{\bar{m}_{Z^{\prime}}^{2}}{\bar{\mu}^{2}}-\frac{5}{6}\right) \\
& +\frac{\bar{m}_{G, \xi}^{4}}{64 \pi^{2}}\left(\ln \frac{\bar{m}_{G, \xi}^{2}}{\bar{\mu}^{2}}-\frac{3}{2}\right)-\frac{\left(\xi \bar{m}_{Z^{\prime}}^{2}\right)^{2}}{64 \pi^{2}}\left(\ln \frac{\xi \bar{m}_{Z^{\prime}}^{2}}{\bar{\mu}^{2}}-\frac{3}{2}\right),
\end{aligned}
$$

where $\quad \bar{m}_{Z^{\prime}}^{2}=\left(g^{\prime} Q_{S}^{\prime} \varphi_{S}\right)^{2}, \quad \bar{m}_{G, \xi}^{2}=\lambda_{S} \varphi_{S}^{2}+\xi \bar{m}_{Z^{\prime}}^{2}$.
Minimization condition $\rightarrow \lambda_{s}=O\left(g^{\prime} 4 / 16 \pi^{2}\right)$
One gets

$$
V_{\mathrm{eff}}\left(\varphi_{S}\right) \simeq \frac{3 \bar{m}_{Z^{\prime}}^{4}}{64 \pi^{2}}\left(\ln \frac{\varphi_{S}^{2}}{v_{S}^{2}}-\frac{1}{2}\right), \quad \xi \text { independent!! }
$$

- Finite-T 1-loop effective potential is also ξ independent.
- ξ dependence will appear from 2-loop order.

Classical scale-inv. U(1) model

ξ dependence is different from the massive $U(1)$ model case.

$$
\begin{aligned}
V_{\text {eff }}\left(\varphi_{S}\right)= & \frac{\lambda_{S}}{4} \varphi_{S}^{4}+3 \frac{\bar{m}_{Z^{\prime}}^{4}}{64 \pi^{2}}\left(\ln \frac{\bar{m}_{Z^{\prime}}^{2}}{\bar{\mu}^{2}}-\frac{5}{6}\right) \\
& +\frac{\bar{m}_{G, \xi}^{4}}{64 \pi^{2}}\left(\ln \frac{\bar{m}_{G, \xi}^{2}}{\bar{\mu}^{2}}-\frac{3}{2}\right)-\frac{\left(\xi \bar{m}_{Z^{\prime}}^{2}\right)^{2}}{64 \pi^{2}}\left(\ln \frac{\xi \bar{m}_{Z^{\prime}}^{2}}{\bar{\mu}^{2}}-\frac{3}{2}\right),
\end{aligned}
$$

where $\quad \bar{m}_{Z^{\prime}}^{2}=\left(g^{\prime} Q_{S}^{\prime} \varphi_{S}\right)^{2}, \quad \bar{m}_{G, \xi}^{2}=\lambda \varphi^{\prime} \varphi_{S}^{2}+\xi \bar{m}_{Z^{\prime}}^{2}$.
Minimization condition $\rightarrow \lambda_{s}=O\left(g^{\prime} 4 / 16 \pi^{2}\right)$
One gets

$$
V_{\mathrm{eff}}\left(\varphi_{S}\right) \simeq \frac{3 \bar{m}_{Z^{\prime}}^{4}}{64 \pi^{2}}\left(\ln \frac{\varphi_{S}^{2}}{v_{S}^{2}}-\frac{1}{2}\right), \quad \xi \text { independent!! }
$$

- Finite-T 1-loop effective potential is also ξ independent.
- ξ dependence will appear from 2-loop order.

Classical scale-inv. U(1) model

ξ dependence is different from the massive $U(1)$ model case.

$$
\begin{aligned}
V_{\mathrm{eff}}\left(\varphi_{S}\right)= & \frac{\lambda_{S}}{4} \varphi_{S}^{4}+3 \frac{\bar{m}_{Z^{\prime}}^{4}}{64 \pi^{2}}\left(\ln \frac{\bar{m}_{Z^{\prime}}^{2}}{\bar{\mu}^{2}}-\frac{5}{6}\right) \\
& +\frac{\bar{m}_{G, \xi}^{4}\left(\ln \frac{\bar{m}_{G, \xi}^{2}}{64 \pi^{2}}-\frac{3}{\mu^{2}}\right)-\frac{\left(\xi \bar{m}_{Z^{\prime}}^{2}\right)^{2}}{64 \pi^{2}}\left(\ln \frac{\xi \bar{m}_{Z^{\prime}}^{2}}{\bar{\mu}^{2}}-\frac{3}{2}\right),}{} .
\end{aligned}
$$

where $\quad \bar{m}_{Z^{\prime}}^{2}=\left(g^{\prime} Q_{S}^{\prime} \varphi_{S}\right)^{2}, \quad \bar{m}_{G, \xi}^{2}=\lambda \varphi^{\prime} \varphi_{S}^{2}+\xi \bar{m}_{Z^{\prime}}^{2}$.
Minimization condition $\rightarrow \lambda_{s}=O\left(g^{\prime} 4 / 16 \pi^{2}\right)$
One gets

$$
V_{\mathrm{eff}}\left(\varphi_{S}\right) \simeq \frac{3 \bar{m}_{Z^{\prime}}^{4}}{64 \pi^{2}}\left(\ln \frac{\varphi_{S}^{2}}{v_{S}^{2}}-\frac{1}{2}\right), \quad \xi \text { independent!! }
$$

- Finite-T 1-loop effective potential is also ξ independent.
- ξ dependence will appear from 2-loop order.

Thermal resummation

At high T

Prescription

e.g. NG boson

$$
\bar{m}_{G, \xi}^{2} \rightarrow \bar{m}_{G, \xi}^{2}+\Delta m_{S}^{2}
$$

to leading order: $\quad \Delta m_{S}^{2}=\frac{\left(g^{\prime} Q_{S}^{\prime}\right)^{2}}{4} T^{2}$

$$
\begin{aligned}
V_{\mathrm{eff}}\left(\varphi_{S} ; T\right) & \underset{\xi \text {-part }}{=} \frac{\left(\xi \bar{m}_{Z^{\prime}}^{2}+\Delta m_{S}^{2}\right)^{2}}{64 \pi^{2}}\left(\ln \frac{\xi \bar{m}_{Z^{\prime}}^{2}+\Delta m_{S}^{2}}{\bar{\mu}^{2}}-\frac{3}{2}\right)-\frac{\left(\xi \bar{m}_{Z^{\prime}}^{2}\right)^{2}}{64 \pi^{2}}\left(\ln \frac{\xi \bar{m}_{Z^{\prime}}^{2}}{\bar{\mu}^{2}}-\frac{3}{2}\right) \\
& +\frac{T^{4}}{2 \pi^{2}}\left[I_{B}\left(\frac{\xi \bar{m}_{Z^{\prime}}^{2}+\Delta m_{S}^{2}}{T^{2}}\right)-I_{B}\left(\frac{\xi \bar{m}_{Z^{\prime}}^{2}}{T^{2}}\right)\right]
\end{aligned}
$$

where I_{B} is a 1-loop thermal function.
$V_{\text {eff }}$ is no longer ξ independent due to $\Delta m_{S}^{2} \neq 0$

Thermal resummation

At high T

Prescription

e.g. NG boson

$$
\bar{m}_{G, \xi}^{2} \rightarrow \bar{m}_{G, \xi}^{2}+\Delta m_{S}^{2}
$$

to leading order: $\quad \Delta m_{S}^{2}=\frac{\left(g^{\prime} Q_{S}^{\prime}\right)^{2}}{4} T^{2}$

$$
\begin{aligned}
V_{\mathrm{eff}}\left(\varphi_{S} ; T\right) & \underset{\xi \text {-part }}{=} \frac{\left(\xi \bar{m}_{Z^{\prime}}^{2}+\Delta m_{S}^{2}\right)^{2}}{64 \pi^{2}}\left(\ln \frac{\xi \bar{m}_{Z^{\prime}}^{2}+\Delta m_{S}^{2}}{\bar{\mu}^{2}}-\frac{3}{2}\right)-\frac{\left(\xi \bar{m}_{Z^{\prime}}^{2}\right)^{2}}{64 \pi^{2}}\left(\ln \frac{\xi \bar{m}_{Z^{\prime}}^{2}}{\bar{\mu}^{2}}-\frac{3}{2}\right) \\
& +\frac{T^{4}}{2 \pi^{2}}\left[I_{B}\left(\frac{\xi \bar{m}_{Z^{\prime}}^{2}+\Delta m_{S}^{2}}{T^{2}}\right)-I_{B}\left(\frac{\xi \bar{m}_{Z^{\prime}}^{2}}{T^{2}}\right)\right]
\end{aligned}
$$

where I_{B} is a 1-loop thermal function.
$V_{\text {eff }}$ is no longer ξ independent due to $\Delta m_{S}^{2} \neq 0$

Gravitational Waves from $1^{\text {st_}}$-order EWPT

GWs are induced by the $1^{\text {st }}$-order EWPT.
Sources of GW
(1) Bubble collisions,
(2)Sound waves,
(3)Turbulence

See Ref. [C.Caprini et al, 1512.06239(JCAP)]

2 important parameters: [Grojean, Servant, hep-ph/0607107(PRD)] latent heat (α), duration of $\mathrm{PT}(\beta)$
$\alpha \equiv \frac{\epsilon\left(T_{*}\right)}{\rho_{\mathrm{rad}}\left(T_{*}\right)}$ and $\left.\beta \equiv H_{*} T_{*} \frac{d}{d T}\left(\frac{S_{3}(T)}{T}\right)\right|_{T=T_{*}} \quad, \quad \epsilon(T)=\Delta V_{\mathrm{eff}}-T \frac{\partial \Delta V_{\mathrm{eff}}}{\partial T}$ and $\rho_{\mathrm{rad}}(T)=\frac{\pi^{2}}{30} g_{*}(T) T^{4}$,

Gravitational Waves from $1^{\text {st.-order EWPT }}$

[C.Caprini et al, 1512.06239(JCAP)]

$$
\Omega_{\mathrm{GW}} h^{2}=\Omega_{\mathrm{col}} h^{2}+\Omega_{\mathrm{sW}} h^{2}+\Omega_{\mathrm{turb}} h^{2}
$$

Dominant source is sound waves:

$$
\begin{aligned}
\Omega_{\mathrm{sw}} h^{2}(f) & =2.65 \times 10^{-6} \tilde{\beta}^{-1}\left(\frac{\kappa_{v} \alpha}{1+\alpha}\right)^{2}\left(\frac{100}{g_{*}}\right)^{1 / 3} v_{w}\left(\frac{f}{f_{\mathrm{sw}}}\right)^{3}\left(\frac{7}{4+3\left(f / f_{\mathrm{sw}}\right)^{2}}\right)^{7 / 2}, \\
f_{\mathrm{sw}} & =1.9 \times 10^{-2} \mathrm{mHz} \frac{\tilde{\beta}}{v_{w}}\left(\frac{T_{*}}{100 \mathrm{GeV}}\right)\left(\frac{g_{*}}{100}\right)^{1 / 6}, \quad \tilde{\beta}=\frac{\beta}{H_{*}} \\
\kappa_{v} & \simeq \alpha /(0.73+0.083 \sqrt{\alpha}+\alpha) \text { for } v_{w} \simeq 1
\end{aligned}
$$

- Most calculations of $\alpha \& \beta$ in the literature depends on ξ.
- How much ξ dependence can affect GW?

Impact of ξ on T_{N}

[Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]

$$
Q_{S}^{\prime}=2, \alpha^{\prime}=g^{\prime 2} / 4 \pi=0.015, m_{Z^{\prime}}=4.5 \mathrm{TeV} \text { and } m_{\nu_{R 1,2,3}}=1.0 \mathrm{TeV}
$$

$$
\begin{gathered}
S_{3}=4 \pi \int_{0}^{\infty} d r r^{2}\left[\frac{1}{2}\left(\frac{d \phi_{S}}{d r}\right)^{2}+V_{\mathrm{eff}}\left(\phi_{S} ; T\right)\right] \\
\frac{d^{2} \phi_{S}}{d r^{2}}+\frac{2}{r} \frac{d \phi_{S}}{d r}-\frac{\partial V_{\mathrm{eff}}}{\partial \phi_{S}}=0
\end{gathered}
$$

$\lim _{r \rightarrow \infty} \phi_{S}(r)=0$ and $d \phi_{S}(r) /\left.d r\right|_{r=0}=0$.

	no resum	$\xi=0$	$\xi=1$	$\xi=5$
$v_{S}\left(T_{*}\right) / T_{*}$	$5.181 / 0.328=15.8$	$5.181 / 0.368=14.1$	$5.180 / 0.405=12.8$	$5.163 / 0.490=10.5$
α	2.27	1.44	0.99	0.48
$\tilde{\beta}$	89.4	97.5	105.4	135.0

Impact of ξ on T_{N}

[Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]
$Q_{S}^{\prime}=2, \alpha^{\prime}=g^{\prime 2} / 4 \pi=0.015, m_{Z^{\prime}}=4.5 \mathrm{TeV}$ and $m_{\nu_{R 1,2,3}}=1.0 \mathrm{TeV}$.

$$
\begin{aligned}
& S_{3}=4 \pi \int_{0}^{\infty} d r r^{2}\left[\frac{1}{2}\left(\frac{d \phi_{S}}{d r}\right)^{2}+V_{\mathrm{eff}}\left(\phi_{S} ; T\right)\right] \\
& \frac{d^{2} \phi_{S}}{d r^{2}}+\frac{2}{r} \frac{d \phi_{S}}{d r}-\frac{\partial V_{\mathrm{eff}}}{\partial \phi_{S}}=0 \\
& \lim _{r \rightarrow \infty} \phi_{S}(r)=0 \text { and } d \phi_{S}(r) /\left.d r\right|_{r=0}=0 .
\end{aligned}
$$

	no resum	$\xi=0$	$\xi=1$	$\xi=5$
$v_{S}\left(T_{*}\right) / T_{*}$	$5.181 / 0.328=15.8$	$5.181 / 0.368=14.1$	$5.180 / 0.405=12.8$	$5.163 / 0.490=10.5$
α	2.27	1.44	0.99	0.48
$\tilde{\beta}$	89.4	97.5	105.4	135.0

Impact of ξ on T_{N}

[Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]
$Q_{S}^{\prime}=2, \alpha^{\prime}=g^{\prime 2} / 4 \pi=0.015, m_{Z^{\prime}}=4.5 \mathrm{TeV}$ and $m_{\nu_{R 1,2,3}}=1.0 \mathrm{TeV}$.

$$
\begin{gathered}
S_{3}=4 \pi \int_{0}^{\infty} d r r^{2}\left[\frac{1}{2}\left(\frac{d \phi_{S}}{d r}\right)^{2}+V_{\mathrm{eff}}\left(\phi_{S} ; T\right)\right. \\
\frac{d^{2} \phi_{S}}{d r^{2}}+\frac{2}{r} \frac{d \phi_{S}}{d r}-\frac{\partial V_{\mathrm{eff}}}{\partial \phi_{S}}=0
\end{gathered}
$$

$\lim _{r \rightarrow \infty} \phi_{S}(r)=0$ and $d \phi_{S}(r) /\left.d r\right|_{r=0}=0$.

	no resum	$\xi=0$	$\xi=1$	$\xi=5$
$v_{S}\left(T_{*}\right) / T_{*}$	$5.181 / 0.328=15.8$	$5.181 / 0.368=14.1$	$5.180 / 0.405=12.8$	$5.163 / 0.490=10.5$
α	2.27	1.44	0.99	0.48
$\tilde{\beta}$	89.4	97.5	105.4	135.0

Impact of ξ on T_{N}

[Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]
$Q_{S}^{\prime}=2, \alpha^{\prime}=g^{\prime 2} / 4 \pi=0.015, m_{Z^{\prime}}=4.5 \mathrm{TeV}$ and $m_{\nu_{R 1,2,3}}=1.0 \mathrm{TeV}$.

$\frac{d^{2} \phi_{S}}{d r^{2}}+\frac{2}{r} \frac{d \phi_{S}}{d r}-\frac{\partial V_{\mathrm{eff}}}{\partial \phi_{S}}=0$
$\lim _{r \rightarrow \infty} \phi_{S}(r)=0$ and $d \phi_{S}(r) /\left.d r\right|_{r=0}=0$.

	no resum	$\xi=0$	$\xi=1$	$\xi=5$
$v_{S}\left(T_{*}\right) / T_{*}$	$5.181 / 0.328=15.8$	$5.181 / 0.368=14.1$	$5.180 / 0.405=12.8$	$5.163 / 0.490=10.5$
α	2.27	1.44	0.99	0.48
$\tilde{\beta}$	89.4	97.5	105.4	135.0

Impact of ξ on gravitational wave

Impact of ξ on gravitational wave

ξ dependence of $V_{\text {eff }}$ propagates to GW spectrum significantly!

Summary

- We have evaluated the gauge fixing parameter (ξ) dependence on GW from the $1^{\text {st }}$-order phase transitions.
- Effective potential is ξ dependent.
- Such ξ dependence can propagate to nucleation temperature and eventually gravitational waves.
$\Omega_{G W}$ can change $O(1)$ in magnitude varying $\xi=0-5$.
- Gauge-inv. method with consistent thermal resummation is necessary to get reliable results.

Backup

1-loop effective potential $\mathrm{T} \neq 0$

Using a high-T expansion, one gets

$$
\begin{aligned}
& V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =\frac{T^{2}}{24}\left(\bar{m}_{h}^{2}+\bar{m}_{G}^{2}+3 \bar{m}_{A}^{2}\right)-\frac{T}{12 \pi}\left[\left(\bar{m}_{h}^{2}\right)^{3 / 2}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{3 / 2}+\left(3-\xi^{3 / 2}\right)\left(\bar{m}_{A}^{2}\right)^{3 / 2}\right] \\
& \quad+\frac{1}{64 \pi^{2}}\left[\bar{m}_{h}^{4} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+3 \bar{m}_{A}^{4}\left(\ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\frac{2}{3}\right)-\left(\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
V_{\mathrm{eff}}(\varphi, \xi ; T) & =V_{0}(\varphi)+V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =D\left(T^{2}-T_{0}^{2}\right) \varphi^{2}-E T\left(\varphi^{2}\right)^{3 / 2}+\frac{\lambda_{T}}{4} \varphi^{4}
\end{aligned}
$$

1-loop effective potential $\mathrm{T} \neq 0$

Using a high-T expansion, one gets

$$
\begin{aligned}
& V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =\frac{T^{2}}{24}\left(\bar{m}_{h}^{2}+\bar{m}_{G}^{2}+3 \bar{m}_{A}^{2}\right)-\frac{T}{12 \pi}\left[\left(\bar{m}_{h}^{2}\right)^{3 / 2}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{3 / 2}+\left(3-\xi^{3 / 2}\right)\left(\bar{m}_{A}^{2}\right)^{3 / 2}\right] \\
& \\
& \quad+\frac{1}{64 \pi^{2}}\left[\bar{m}_{h}^{4} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+3 \bar{m}_{A}^{4}\left(\ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\frac{2}{3}\right)-\left(\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}\right]
\end{aligned}
$$

"T²-terms" are gauge-independent.

$$
\begin{aligned}
V_{\mathrm{eff}}(\varphi, \xi ; T) & =V_{0}(\varphi)+V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =D\left(T^{2}-T_{0}^{2}\right) \varphi^{2}-E T\left(\varphi^{2}\right)^{3 / 2}+\frac{\lambda_{T}}{4} \varphi^{4}
\end{aligned}
$$

1-loop effective potential $\mathrm{T} \neq 0$

Using a high-T expansion, one gets

$$
\begin{aligned}
& V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =\frac{T^{2}}{24}\left(\bar{m}_{h}^{2}+\bar{m}_{G}^{2}+3 \bar{m}_{A}^{2}\right)-\frac{T}{12 \pi}\left[\left(\bar{m}_{h}^{2}\right)^{3 / 2}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{3 / 2}+\left(3-\xi^{3 / 2}\right)\left(\bar{m}_{A}^{2}\right)^{3 / 2}\right] \\
& \\
& \quad+\frac{1}{64 \pi^{2}}\left[\bar{m}_{h}^{4} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+3 \bar{m}_{A}^{4}\left(\ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\frac{2}{3}\right)-\left(\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}\right]
\end{aligned}
$$

"T²-terms" are gauge-independent.
ξ terms disappear if $\bar{m}_{G}^{2}=0$

$$
\begin{aligned}
V_{\mathrm{eff}}(\varphi, \xi ; T) & =V_{0}(\varphi)+V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =D\left(T^{2}-T_{0}^{2}\right) \varphi^{2}-E T\left(\varphi^{2}\right)^{3 / 2}+\frac{\lambda_{T}}{4} \varphi^{4}
\end{aligned}
$$

1-loop effective potential $\mathrm{T} \neq 0$

Using a high-T expansion, one gets

$$
\begin{aligned}
& V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =\frac{T^{2}}{24}\left(\bar{m}_{h}^{2}+\bar{m}_{G}^{2}+3 \bar{m}_{A}^{2}\right)-\frac{T}{12 \pi}\left[\left(\bar{m}_{h}^{2}\right)^{3 / 2}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{3 / 2}+\left(3-\xi^{3 / 2}\right)\left(\bar{m}_{A}^{2}\right)^{3 / 2}\right] \\
& \\
& \quad+\frac{1}{64 \pi^{2}}\left[\bar{m}_{h}^{4} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+3 \bar{m}_{A}^{4}\left(\ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\frac{2}{3}\right)-\left(\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}\right]
\end{aligned}
$$

"T²-terms" are gauge-independent.
$\boldsymbol{\xi}$ terms disappear if $\bar{m}_{G}^{2}=0$

$$
\begin{aligned}
V_{\mathrm{eff}}(\varphi, \xi ; T) & =V_{0}(\varphi)+V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =D\left(T^{2}-T_{0}^{2}\right) \varphi^{2}-E T\left(\varphi^{2}\right)^{3 / 2}+\frac{\lambda_{T}}{4} \varphi^{4}
\end{aligned}
$$

1-loop effective potential $\mathrm{T} \neq 0$

Using a high-T expansion, one gets

$$
\begin{aligned}
& V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =\frac{T^{2}}{24}\left(\bar{m}_{h}^{2}+\bar{m}_{G}^{2}+3 \bar{m}_{A}^{2}\right)-\frac{T}{12 \pi}\left[\left(\bar{m}_{h}^{2}\right)^{3 / 2}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{3 / 2}+\left(3-\xi^{3 / 2}\right)\left(\bar{m}_{A}^{2}\right)^{3 / 2}\right] \\
& \\
& \quad+\frac{1}{64 \pi^{2}}\left[\bar{m}_{h}^{4} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+3 \bar{m}_{A}^{4}\left(\ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\frac{2}{3}\right)-\left(\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}\right]
\end{aligned}
$$

"T²-terms" are gauge-independent.
ξ terms disappear if $\bar{m}_{G}^{2}=0$

$$
\begin{aligned}
V_{\text {eff }}(\varphi, \xi ; T) & =V_{0}(\varphi)+V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =D\left(T^{2}-T_{0}^{2}\right) \varphi^{2}-E T\left(\varphi^{2}\right)^{3 / 2}+\frac{\lambda_{T}}{4} \varphi^{4}
\end{aligned}
$$

1-loop effective potential $\mathrm{T} \neq 0$

Using a high-T expansion, one gets

$$
\begin{aligned}
& V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =\frac{T^{2}}{24}\left(\bar{m}_{h}^{2}+\bar{m}_{G}^{2}+3 \bar{m}_{A}^{2}\right)-\frac{T}{12 \pi}\left[\left(\bar{m}_{h}^{2}\right)^{3 / 2}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{3 / 2}+\left(3-\xi^{3 / 2}\right)\left(\bar{m}_{A}^{2}\right)^{3 / 2}\right] \\
& \\
& \quad+\frac{1}{64 \pi^{2}}\left[\bar{m}_{h}^{4} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+3 \bar{m}_{A}^{4}\left(\ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\frac{2}{3}\right)-\left(\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}\right]
\end{aligned}
$$

"T²-terms" are gauge-independent.
$\boldsymbol{\xi}$ terms disappear if $\bar{m}_{G}^{2}=0$

$$
\begin{aligned}
V_{\mathrm{eff}}(\varphi, \xi ; T) & =V_{0}(\varphi)+V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =D\left(T^{2}-T_{0}^{2}\right) \varphi^{2}-E T\left(\varphi^{2}\right)^{3 / 2}+\frac{\lambda_{T}}{4} \varphi^{4}
\end{aligned}
$$

1-loop effective potential $\mathrm{T} \neq 0$

Using a high-T expansion, one gets

$$
\begin{aligned}
& V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =\frac{T^{2}}{24}\left(\bar{m}_{h}^{2}+\bar{m}_{G}^{2}+3 \bar{m}_{A}^{2}\right)-\frac{T}{12 \pi}\left[\left(\bar{m}_{h}^{2}\right)^{3 / 2}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{3 / 2}+\left(3-\xi^{3 / 2}\right)\left(\bar{m}_{A}^{2}\right)^{3 / 2}\right] \\
& \quad+\frac{1}{64 \pi^{2}}\left[\bar{m}_{h}^{4} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\left(\bar{m}_{G}^{2}+\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+3 \bar{m}_{A}^{4}\left(\ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}+\frac{2}{3}\right)-\left(\xi \bar{m}_{A}^{2}\right)^{2} \ln \frac{\alpha_{B} T^{2}}{\bar{\mu}^{2}}\right] .
\end{aligned}
$$

" T^{2}-terms" are gauge-independent.
ξ terms disappear if $\bar{m}_{G}^{2}=0$

$$
\begin{aligned}
V_{\mathrm{eff}}(\varphi, \xi ; T) & =V_{0}(\varphi)+V_{1}(\varphi, \xi)+V_{1}(\varphi, \xi ; T) \\
& =D\left(T^{2}-T_{0}^{2}\right) \varphi^{2}-E T\left(\varphi^{2}\right)^{3 / 2}+\frac{\lambda_{T}}{4} \varphi^{4}
\end{aligned}
$$

$$
\frac{v_{C}}{T_{C}}=\frac{2 E}{\lambda_{T}}
$$

Thermal resummation

[Many refs: see, e.g., Parwani (92), Buchmüller et al (93), Chiku, Hatsuda (98), etc.] Perturbative expansion gets worse at high T .

Dominant thermal terms are added and subtracted in the Lagrangian:

$$
\begin{aligned}
\mathcal{L}_{B}=\mathcal{L}_{R}+\mathcal{L}_{\mathrm{CT}} \rightarrow & {\left[\mathcal{L}_{R}+\Delta m_{S}^{2}|S|^{2}+\frac{1}{2} \Delta m_{L}^{2} Z^{\prime \mu} L_{\mu \nu}(i \partial) Z^{\prime \nu}+\frac{1}{2} \Delta m_{T}^{2} Z^{\prime \mu} T_{\mu \nu}(i \partial) Z^{\prime \nu}\right] } \\
& +\left[\mathcal{L}_{\mathrm{CT}}-\Delta m_{S}^{2}|S|^{2}-\frac{1}{2} \Delta m_{L}^{2} Z^{\prime \mu} L_{\mu \nu}(i \partial) Z^{\prime \nu}-\frac{1}{2} \Delta m_{T}^{2} Z^{\prime \mu} T_{\mu \nu}(i \partial) Z^{\prime \nu}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& T_{00}=T_{0 i}=T_{i 0}=0, \quad T_{i j}=g_{i j}-\frac{k_{i} k_{j}}{-\boldsymbol{k}^{2}}, \\
& L_{\mu \nu}=P_{\mu \nu}-T_{\mu \nu}, \quad P_{\mu \nu}=g_{\mu \nu}-\frac{k_{\mu} k_{\nu}}{k^{2}}
\end{aligned}
$$

[N.B.] Resummed Lagrangian preserves the gauge invariance.

Thermal resummation

[Many refs: see, e.g., Parwani (92), Buchmüller et al (93), Chiku, Hatsuda (98), etc.] Perturbative expansion gets worse at high T .

Dominant thermal terms are added and subtracted in the Lagrangian: new unperturbed part $\begin{aligned} \mathcal{L}_{B}=\mathcal{L}_{R}+\mathcal{L}_{\mathrm{CT}} & \rightarrow \mathcal{L}_{R}+\Delta m_{S}^{2}|S|^{2}+\frac{1}{2} \Delta m_{L}^{2} Z^{\prime \mu} L_{\mu \nu}(i \partial) Z^{\prime \nu}+\frac{1}{2} \Delta m_{T}^{2} Z^{\prime \mu} T_{\mu \nu}(i \partial) Z^{\prime \nu} \\ & +\left[\mathcal{L}_{\mathrm{CT}}-\Delta m_{S}^{2}|S|^{2}-\frac{1}{2} \Delta m_{L}^{2} Z^{\prime \mu} L_{\mu \nu}(i \partial) Z^{\prime \nu}-\frac{1}{2} \Delta m_{T}^{2} Z^{\prime \mu} T_{\mu \nu}(i \partial) Z^{\prime \nu}\right]\end{aligned}$ where $\quad T_{00}=T_{0 i}=T_{i 0}=0, \quad T_{i j}=g_{i j}-\frac{k_{i} k_{j}}{-\boldsymbol{k}^{2}}$,

$$
L_{\mu \nu}=P_{\mu \nu}-T_{\mu \nu}, \quad P_{\mu \nu}=g_{\mu \nu}-\frac{k_{\mu} k_{\nu}}{k^{2}},
$$

[N.B.] Resummed Lagrangian preserves the gauge invariance.

Thermal resummation

[Many refs: see, e.g., Parwani (92), Buchmüller et al (93), Chiku, Hatsuda (98), etc.] Perturbative expansion gets worse at high T .

Dominant thermal terms are added and subtracted in the Lagrangian: new unperturbed part $\mathcal{L}_{B}=\mathcal{L}_{R}+\mathcal{L}_{\mathrm{CT}} \rightarrow \mathcal{L}_{R}+\Delta m_{S}^{2}|S|^{2}+\frac{1}{2} \Delta m_{L}^{2} Z^{\prime \mu} L_{\mu \nu}(i \partial) Z^{\prime \nu}+\frac{1}{2} \Delta m_{T}^{2} Z^{\prime \mu} T_{\mu \nu}(i \partial) Z^{\prime \nu}$

$$
+\mathcal{L}_{\text {CT }}-\Delta m_{S}^{2}|S|^{2}-\frac{1}{2} \Delta m_{L}^{2} Z^{\prime \mu} L_{\mu \nu}(i \partial) Z^{\prime \prime}-\frac{1}{2} \Delta m_{T}^{2} Z^{\prime \mu} T_{\mu \nu}(i \partial) Z^{\prime \prime}
$$

where $\quad T_{00}=T_{0 i}=T_{i 0}=0, \quad T_{i j}=g_{i j}-\frac{k_{i} k_{j}}{-\boldsymbol{k}^{2}}$,

$$
L_{\mu \nu}=P_{\mu \nu}-T_{\mu \nu}, \quad P_{\mu \nu}=g_{\mu \nu}-\frac{k_{\mu} k_{\nu}}{k^{2}},
$$

[N.B.] Resummed Lagrangian preserves the gauge invariance.

Impact of ξ on v/T

e.g., scale-inv. $U(1)_{B-L}$ model [Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]
$Q_{S}^{\prime}=2, \alpha^{\prime}=g^{\prime 2} / 4 \pi=0.015, m_{Z^{\prime}}=4.5 \mathrm{TeV}$ and $m_{\nu_{R 1,2,3}}=1.0 \mathrm{TeV}$.

	no resum	$\xi=0$	$\xi=1$	$\xi=5$
$\frac{v_{S}\left(T_{C}\right)}{T_{C}}$	$\frac{4.851}{1.321}=3.67$	$\frac{4.833}{1.346}=3.59$	$\frac{4.816}{1.368}=3.52$	$\frac{4.695}{1.348}=3.48$

Impact of ξ on v/T

e.g., scale-inv. $U(1)_{B-L}$ model [Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]
$Q_{S}^{\prime}=2, \alpha^{\prime}=g^{\prime 2} / 4 \pi=0.015, m_{Z^{\prime}}=4.5 \mathrm{TeV}$ and $m_{\nu_{R 1,2,3}}=1.0 \mathrm{TeV}$.

	no resum	$\xi=0$	$\xi=1$	$\xi=5$
$\frac{v_{S}\left(T_{C}\right)}{T_{C}}$	$\frac{4.851}{1.321}=3.67$	$\frac{4.833}{1.346}=3.59$	$\frac{4.816}{1.368}=3.52$	$\frac{4.695}{1.348}=3.48$

Impact of ξ on \mathbf{v} / T

e.g., scale-inv. $U(1)_{B-L}$ model [Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]
$Q_{S}^{\prime}=2, \alpha^{\prime}=g^{\prime 2} / 4 \pi=0.015, m_{Z^{\prime}}=4.5 \mathrm{TeV}$ and $m_{\nu_{R 1,2,3}}=1.0 \mathrm{TeV}$.

	no resum	$\xi=0$	$\xi=1$	$\xi=5$
$\frac{v_{S}\left(T_{C}\right)}{T_{C}}$	$\frac{4.851}{1.321}=3.67$	$\frac{4.833}{1.346}=3.59$	$\frac{4.816}{1.368}=3.52$	$\frac{4.695}{1.348}=3.48$

Onset of PT

- T_{c} is not onset of the PT.
- Nucleation starts somewhat below Tc.
"Not all bubbles can grow"

expand? or shrink?
volume energy vs. surface energy
 $\alpha(\text { radius })^{3}$ $\alpha(\text { radius })^{2}$

There is a critical value of radius \rightarrow critical bubble

Nucleation temperature

- Nucleation rate per unit time per unit volume

$$
\Gamma_{N}(T) \simeq T^{4}\left(\frac{S_{3}(T)}{2 \pi T}\right)^{3 / 2} e^{-S_{3}(T) / T} \quad[\text { A.D. Linde, NPB216 ('82) 421] }
$$

$S_{3}(T)$: energy of the critical bubble at T

- Definition of nucleation temperature $\left(T_{N}\right)$ horizon scale $\simeq H(T)^{-1}$

$$
\Gamma_{N}\left(T_{N}\right) H\left(T_{N}\right)^{-3}=H\left(T_{N}\right)
$$

$$
\frac{S_{3}\left(T_{N}\right)}{T_{N}}-\frac{3}{2} \ln \left(\frac{S_{3}\left(T_{N}\right)}{T_{N}}\right)=152.59-2 \ln g_{*}\left(T_{N}\right)-4 \ln \left(\frac{T_{N}}{100 \mathrm{GeV}}\right)
$$

Roughly, $S_{3}(T) / T \leqslant 150$ is needed for the PT.

