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Introduction

- Effective potential inherently depends on 
gauge-fixing parameter (ξ).

1st-order PT

- 1st-order phase transition (PT) has interesting physical 
implications: 
Electroweak Baryogenesis, Gravitational Waves (GW), etc.

- Mostly, effective potential is used for such calculations.

problem

Q. How (numerically) serious?

- Nucleation temperature (TN), GW can be 
ξdependent. 0
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Thorny problem

Effective potential is 
gauge dependent!!

Veff ∋ ∌

1PI diagrams only

Because

Leg corrections are needed to remove the ξ dependence.

ξ ξ
Jackiw, PRD9,1686 (1974)



- Energies at stationary points do not depend on ξ
- Generally, VEV depends on a gauge parameter ξ

(Nielsen-Fukuda-Kugo (NFK) identity)
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Figure 2. A schematic illustration of the behavior of the exact effective potential as the gauge
parameter ξ is varied according to Nielsen’s identity. The values of the potential at its extrema
stay unchanged but the fields extremizing the potential are gauge-dependent.

artifact of an approximation scheme. In particular, näıvely truncating the perturbative

effective potential at a finite order in perturbation theory leads to apparent violations of

Nielsen’s identity. In fact, we identify this näıve truncation as the principal source of gauge

dependence in the standard determination of TC .

Such effects may be deduced directly from Nielsen’s identity. By expressing Veff(φ)

and C(φ, ξ) in (2.26) as a series in !,

Veff(φ) = V0(φ) + ! V1(φ) + !
2 V2(φ) + . . . (2.27)

C(φ, ξ) = c0 + ! c1(φ) + !
2 c2(φ) + . . . , (2.28)

and retaining terms through O(!) in both sides of (2.26), we find

∂V0

∂ξ
+ !

∂V1

∂ξ
= −c0

∂V0

∂φ
− !

(

c0
∂V1

∂φ
+ c1

∂V0

∂φ

)

. (2.29)

Since the tree-level potential V0 is strictly gauge independent, setting O(!0) terms equal

implies c0 = 0. Upon setting O(!1) terms equal we have

∂V1

∂ξ
= −c1

∂V0

∂φ
; (2.30)

that is, the one-loop potential is gauge-independent only where the tree-level potential is

extremized, and not where the one-loop potential is extremized. Therefore, the critical

temperature based on the one-loop extremum is gauge-dependent. We note that gauge

dependence appears formally at a higher order than the order of approximation. Yet,

numerically, there is no limit to its sensitivity, and one should necessarily strive to ob-

tain a critical temperature that strictly maintains gauge-independence at each order in

perturbation theory.

3 Gauge-independent determination of TC

In the following sections, we detail one method for performing a gauge-independent per-

turbative analysis of the EWPT. As discussed above, exact expressions for the critical
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gauge boson:
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ghost:

Abelian-Higgs model
~ an example ~
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1-loop effective potential

NFK identity at 1-loop level:

ξ-dependence disappears at
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Noξ-dependence at but it is no longer a minimum

at 1-loop level.

Plotting Veff=V0+V1, 
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Energy at φ=246 GeV depends on ξ!!

When 1-loop minimization condition is imposed, @(V0 + V1)
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1-loop effective potential at T≠0

Using a high-T expansion of IB(a2), one gets

V1(', ⇠) + V1(', ⇠;T )

=
T 2

24
(m̄2

h + m̄2
G + 3m̄2

A)�
T

12⇡

h
(m̄2

h)
3/2 + (m̄2

G + ⇠m̄2
A)

3/2 + (3� ⇠3/2)(m̄2
A)

3/2
i

+
1

64⇡2


m̄4

h ln
↵BT 2

µ̄2
+ (m̄2

G + ⇠m̄2
A)

2 ln
↵BT 2

µ̄2
+ 3m̄4

A

✓
ln

↵BT 2

µ̄2
+

2

3

◆
� (⇠m̄2

A)
2 ln

↵BT 2

µ̄2

�
.

I

B

(a2) =

Z 1

0
dx x

2 ln
h
1� e

�
p
x

2+a

2
i
.

<latexit sha1_base64="hYFr6HfUNTOq/zf8ZrsnAg4vzdA="></latexit>

V1(', ⇠;T ) =
X

i

T 4

2⇡2
IB(a

2
i ),

<latexit sha1_base64="P8KP3QnIp7ltqBN2OPHOYcb5SrA="></latexit>

where



1-loop effective potential at T≠0

Using a high-T expansion of IB(a2), one gets

Veff at T≠0 also depends on ξ except “T2-terms”.
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Figure 5. A comparison of the critical temperatures as computed using the following methods: the
standard method (solid line); the gauge-independent methods described in the text, derived from
the full theory (dashed lines); and by performing lattice simulations (arrow). Note that the lattice
result is much higher than the perturbative estimations and is displayed on a separate scale.

Also included are lattice results, that yield a critical temperature of 126.8 GeV, in-

dependent of ξ by construction. Our estimate of the higher-order contributions included

in (5.15) leads to a substantially larger value of TC , suggesting that the difference between

the non-perturbative and O(!) perturbative results arises in part from the omission of

higher-order contributions. In addition, we note that the precise definition of TC as ob-

tained from the lattice studies differs from the one we have employed here as well as in other

perturbative analyses (For a discussion of the lattice determinations, see, e.g., refs. [4, 6, 7]).

We speculate that part of the difference between the lattice and perturbative results may

also be due to this difference in definition.

While the gauge-independent perturbative estimation of TC falls below the lattice

value, it is interesting that the dependence on the relevant couplings follows the trend

observed in non-perturbative studies. To illustrate, we plot the one-loop TC as a function

of the Higgs quartic self-coupling λ in figure 6. We observe that increasing λ increases

TC in agreement with our qualitative expectations in (3.11). As we discuss shortly, this

trend implies that the efficiency of sphaleron-induced baryon number washout increases

with λ and, thus, with the value of the Higgs boson mass. This trend is also observed in

non-perturbative studies as well as in earlier gauge-dependent perturbative analyses.

We now turn our attention to the sphaleron scale, v̄(T ), which we plot in figure 7.

We observe that in the vicinity of the TC obtained at O(!) in the full theory, v̄(T ) drops

rapidly to zero. This behavior makes the perturbative estimate of the sphaleron rate at

the critical temperature highly sensitive to small changes in TC . Therefore, statements

about the efficacy of baryon number preservation are susceptible to large uncertainties. To

illustrate, we first consider the value of this scale at the one-loop TC in the full theory,
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observed in non-perturbative studies. To illustrate, we plot the one-loop TC as a function

of the Higgs quartic self-coupling λ in figure 6. We observe that increasing λ increases
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with λ and, thus, with the value of the Higgs boson mass. This trend is also observed in
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and the charge of S associated with the U(1)′. Therefore, the Lagrangian

L = LSM′ −
1

4
Z ′

µνZ
′µν + |DµS|2 − V (H,S) , (1)

where LSM′ denotes the SM Lagrangian without the Higgs potential, the field strength

Z ′
µν = ∂µZ ′

ν − ∂νZ ′
µ, DµS = (∂µ + ig′Q′

SZ
′
µ)S, and H denotes the SU(2)L-doublet Higgs

field. The scale symmetry demands that the scalar potential be composed of only quartic

interactions and read

V (H,S) = λH(H
†H)2 + λHSH

†H|S|2 + λS|S|4 . (2)

We parametrize S as

S(x) =
1√
2

(

vS + hS(x) + iG(x)
)

, (3)

where G(x) the Nambu-Goldstone (NG) boson associated with the spontaneous breaking of

U(1)′. If λHS is negative, the corresponding term in V (H,S) will trigger the electroweak

symmetry breaking, and result in the SM-like Higgs mass given by m2
h = −λHSv2S = 2λHv2

with v ≃ 246 GeV. Here we consider a scenario in which vS is of multi-TeV, so that −λHS =

m2
h/v

2
S ≃ O(10−3) [18, 20, 21], and g′ = O(0.1) ≫ |λHS|. Hence, we can analyze the U(1)′

phase transition independent of the SM sector.

The gauge-fixing and FP ghost terms are given by the BRS transformation of a gauge-

fixing function, F (x) = ∂µZ ′
µ(x) − ξg′Q′

SvSG(x) + ξB(x)/2, where ξ is the gauge-fixing

parameter and B(x) denotes the Nakanishi-Lautrup field [24] that plays the role of a La-

grangian multiplier for the gauge fixing [25]. It follows that

LGF+FP = −
1

2ξ

[

∂µZ ′
µ − ξg′Q′

SvSG
]2

− ic̄(x)
[

∂µ∂µ + ξ(g′Q′
S)

2vS
(

vS + hS

)

]

c(x) , (4)

where c(x) and c̄(x) are the ghost and antighost fields, respectively.

As pointed out by Coleman and Weinberg [26], the U(1)′ symmetry in such theories is

broken by one-loop radiative corrections given by [10]

VCW(ϕS) =
∑

i

nim̄4
i

64π2

(

ln
m̄2

i

µ̄2
− ci

)

, (5)

where ϕS is the classical field of S, m̄ is the ϕS-dependent mass of a particle of species i,

ni is the corresponding number of degrees of freedom, µ̄ is the renormalization scale, and

ci = 3/2 for scalars and FP ghosts and 5/6 for gauge bosons. As recognized in Ref. [10],
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Classical scale-inv. U(1) model
ξ dependence is different from the massive U(1) model case.

V
CW

inherently depends on the ⇠ parameter. The one-loop e↵ective potential takes the

form [13, 27]
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where the field-dependent masses of S, Z 0, and G in the R⇠ gauge are respectively given by
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with m̄2
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2

S. Even though the ⇠-dependent terms are partly cancelled among the gauge

boson, the NG boson and the ghosts, the ⇠ dependence still remains at this stage.

Minimizing the one-loop e↵ective potential in Eq. (6) with respect to 'S and evaluating

it at 'S = vS, one can solve for �S iteratively and obtains to the leading order that
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where we have dropped terms of higher order in �S. This result is in stark di↵erence from

the corresponding one in U(1)0 models without the scale symmetry. Putting �S back to

Eq. (6), we obtain
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which shows no ⇠ dependence. It should be emphasized that in ordinary U(1) models without

scale invariance, m̄2

G cannot be considered as a result of one-loop e↵ects as in the above case.

In that case, V
e↵

('S) depends on ⇠ except at the point where m̄2

G = 0, corresponding to

the parameter set when the tree-level potential, rather than the one-loop potential, assumes

its minimum. Albeit no gauge dependence shows up in Eq. (9), we will point out with an

explicit example below that the ⇠ dependence cannot be relegated to the second order in

perturbation at finite temperatures due to a thermal resummation.

It is well known that at high temperatures perturbative expansions break down and

require thermal resummation, i.e., reorganizing the expansions in such a way that domi-

nant thermal pieces are summed up to all orders. Following the resummation method for

Abelian gauge theories presented in Refs. [28, 29], the thermal masses of the longitudinal

and transverse parts (�mL,T ) of the Z 0 boson as well as the thermal mass of S are added
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- Finite-T 1-loop effective potential is also ξ independent.
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Sources of GW

(1) Bubble collisions, 

(2)Sound waves,

(3)Turbulence

GWs are induced by the 1st-order EWPT.

Gravitational Waves from 1st-order EWPT

See Ref. [C.Caprini et al, 1512.06239(JCAP)]

phase transition strength and the GW spectrum are to the gauge-fixing parameter ⇠ using

an explicit model.

After the thermal resummation, one cannot completely gauge away the kinetic energy of

the gauge field. However, since such an energy is gauge-independent, we will neglect it in

the following discussions for simplicity. Furthermore, the critical bubble for the first-order

phase transition in the early Universe is assumed to be spherically symmetric, with the

energy functional given by

S
3

= 4⇡

Z 1

0

dr r2

1

2

✓
d�S

dr

◆
2

+ V
e↵

(�S;T )

�
, (15)

where �S(r) =
p
2hS(r)i. The equation of motion for �S is then

d2�S

dr2
+

2

r

d�S

dr
� @V

e↵

@�S

= 0 , (16)

with the boundary conditions: limr!1 �S(r) = 0 and d�S(r)/dr|r=0

= 0. We can solve

Eq. (16) by use of a relaxation method (see, e.g., Ref. [30] for details).

Let T⇤ be the temperature at which the GWs are produced from the cosmological phase

transition. Without significant reheating, this temperature can be approximated by the

bubble nucleation temperature, TN , to be defined below. For the phase transition to develop,

at least one bubble must nucleate within the Hubble volume. We thus define TN through

the condition

�N(TN) = H4(TN) , (17)
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with g⇤(T ) being the relativistic degrees of freedom at

T and m
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= 1.22⇥ 1019 GeV, while �N(T ) is the bubble nucleation rate per unit time per
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2 important parameters:

latent heat (α) , duration of PT (β)

[Grojean, Servant, hep-ph/0607107(PRD)]



with ∆Veff being the energy difference between the symmetric and broken phases, and H∗ =

H(T∗). For notational simplicity, we also introduce β̃ ≡ β/H∗.

During the first-order phase transition, the GWs are sourced from bubble collisions, sound

waves and turbulence induced by percolation, leading to ΩGWh2 = Ωcolh2+Ωswh2+Ωturbh2.

Ref. [8] shows that the sound waves can be dominant around the peak frequency and its

spectrum [9]
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and κv ≃ α/(0.73 + 0.083
√
α+ α) for vw ≃ 1. In our numerical analysis below, we will take

vw = 0.95 as a benchmark value. Since Ωsw ∝ f−4 while Ωcol ∝ f−1 and Ωturb ∝ f−5/3 [9] at

higher frequencies, our numerical calculations also include the other two GW sources using

the formulas listed in Refs. [7, 9] in order to have the correct behavior in that regime.

As an explicit example of the classical scale-invariant U(1)′ models, we now consider

the U(1)B−L symmetry. In order to be gauge anomaly-free, three right-handed neutrinos

(νR1,2,3
) are naturally introduced with the Yukawa interactions 1

2

∑

i=1,2,3 YνRi
Sν̄cRiνRi +H.c.

This implies that Q′
S = +2 and the right-handed neutrinos acquires Majorana mass from

vS (see, e.g., Ref. [21] for a detailed discussion). Note that the singlet scalar mass at the

one-loop order is given according to Eq. (9) by m2
S = 8Bv2S, where B = 3m4

Z′/(64π2v4S).

In the U(1)B−L case, we have B = (3m4
Z′ − 2

∑

i=1,2,3 m
4
νRi

)/(64π2v4S) and from which the

condition that
∑

i=1,2,3 m
4
νRi

< 3m4
Z′/2 [18]. Therefore, the right-handed neutrinos cannot

be arbitrarily heavy with respect to the Z ′ mass.

To further simplify the numerical analysis without losing main features, we further sup-

pose that the right-handed neutrinos share the same Yukawa coupling. In this case, the

model has only three new free parameters, which we choose to be α′ ≡ g′2/4π = 0.015,

mZ′ = 4.5 TeV and mνR1
= mνR2

= mνR3
= 1.0 TeV, leading to mS ≃ 0.76 TeV. This

parameter choice is consistent with the recent LHC Run-II data and perturbativity up to

the Planck scale [32]. The original parameters in the Lagrangian are correspondingly fixed

as g′ = 0.43, vS ≃ 5.182 TeV and YνR ≡ YνR1
= YνR2

= YνR3
= 0.27. With this setup, one
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- Most calculations of α&β in the literature depends on ξ.
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phase transition strength and the GW spectrum are to the gauge-fixing parameter ⇠ using

an explicit model.

After the thermal resummation, one cannot completely gauge away the kinetic energy of

the gauge field. However, since such an energy is gauge-independent, we will neglect it in

the following discussions for simplicity. Furthermore, the critical bubble for the first-order

phase transition in the early Universe is assumed to be spherically symmetric, with the

energy functional given by
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with the boundary conditions: limr!1 �S(r) = 0 and d�S(r)/dr|r=0

= 0. We can solve

Eq. (16) by use of a relaxation method (see, e.g., Ref. [30] for details).

Let T⇤ be the temperature at which the GWs are produced from the cosmological phase

transition. Without significant reheating, this temperature can be approximated by the

bubble nucleation temperature, TN , to be defined below. For the phase transition to develop,

at least one bubble must nucleate within the Hubble volume. We thus define TN through

the condition

�N(TN) = H4(TN) , (17)

where H(T ) = 1.66
p
g⇤(T )T 2/m

Pl

with g⇤(T ) being the relativistic degrees of freedom at

T and m
Pl

= 1.22⇥ 1019 GeV, while �N(T ) is the bubble nucleation rate per unit time per

unit volume approximately given by [31]
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From Eqs. (17) and (18), one obtains S
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A model-independent analysis of the GWs has been done in Ref. [6] using two parameters:
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Eq. (16) by use of a relaxation method (see, e.g., Ref. [30] for details).

Let T⇤ be the temperature at which the GWs are produced from the cosmological phase

transition. Without significant reheating, this temperature can be approximated by the

bubble nucleation temperature, TN , to be defined below. For the phase transition to develop,

at least one bubble must nucleate within the Hubble volume. We thus define TN through

the condition
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where H(T ) = 1.66
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with g⇤(T ) being the relativistic degrees of freedom at

T and m
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= 1.22⇥ 1019 GeV, while �N(T ) is the bubble nucleation rate per unit time per
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After the thermal resummation, one cannot completely gauge away the kinetic energy of

the gauge field. However, since such an energy is gauge-independent, we will neglect it in

the following discussions for simplicity. Furthermore, the critical bubble for the first-order

phase transition in the early Universe is assumed to be spherically symmetric, with the

energy functional given by
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= 0. We can solve

Eq. (16) by use of a relaxation method (see, e.g., Ref. [30] for details).

Let T⇤ be the temperature at which the GWs are produced from the cosmological phase

transition. Without significant reheating, this temperature can be approximated by the

bubble nucleation temperature, TN , to be defined below. For the phase transition to develop,

at least one bubble must nucleate within the Hubble volume. We thus define TN through

the condition

�N(TN) = H4(TN) , (17)

where H(T ) = 1.66
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with g⇤(T ) being the relativistic degrees of freedom at

T and m
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= 1.22⇥ 1019 GeV, while �N(T ) is the bubble nucleation rate per unit time per
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Q0
S = 2, ↵0 = g02/4⇡ = 0.015, mZ0 = 4.5 TeV and m⌫R1,2,3 = 1.0 TeV.

[Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]

no resum ⇠ = 0 ⇠ = 1 ⇠ = 5

vS(T⇤)/T⇤ 5.181/0.328 = 15.8 5.181/0.368 = 14.1 5.180/0.405 = 12.8 5.163/0.490 = 10.5
↵ 2.27 1.44 0.99 0.48

˜� 89.4 97.5 105.4 135.0

<latexit sha1_base64="xU/Fh5Ubfm6XLGq8wOrh/l5V70k="></latexit>

T⇤ = TN
<latexit sha1_base64="fEpNsSrjVIBcQV6lN8Ljldjhf4o=">AAAB7nicbVDJSgNBEK1xjXGLevTSGATxMPS4exCCXjxJhGyQDENPp5M06ekZunuEMOQjvHhQxKvf482/sbMcNPFBweO9KqrqhYng2mD87SwsLi2vrObW8usbm1vbhZ3dmo5TRVmVxiJWjZBoJrhkVcONYI1EMRKFgtXD/t3Irz8xpXksK2aQMD8iXck7nBJjpXolOL6pBA9BoYjdc+xdX3gIu3gM5M2SIkxRDgpfrXZM04hJQwXRuunhxPgZUYZTwYb5VqpZQmifdFnTUkkipv1sfO4QHVqljTqxsiUNGqu/JzISaT2IQtsZEdPTs95I/M9rpqZz5WdcJqlhkk4WdVKBTIxGv6M2V4waMbCEUMXtrYj2iCLU2ITyNoS5l+dJ7cT1Tl38eFYs3U7jyME+HMAReHAJJbiHMlSBQh+e4RXenMR5cd6dj0nrgjOd2YM/cD5/AGfijvQ=</latexit>



 200

 250

 300

 350

 400

 450

 500

 550

 600

 0  1  2  3  4  5

T N
  [

G
eV

]

ξ

TN

Impact of ξ on TN

phase transition strength and the GW spectrum are to the gauge-fixing parameter ⇠ using

an explicit model.

After the thermal resummation, one cannot completely gauge away the kinetic energy of

the gauge field. However, since such an energy is gauge-independent, we will neglect it in

the following discussions for simplicity. Furthermore, the critical bubble for the first-order

phase transition in the early Universe is assumed to be spherically symmetric, with the

energy functional given by

S
3

= 4⇡

Z 1

0

dr r2

1

2

✓
d�S

dr

◆
2

+ V
e↵

(�S;T )

�
, (15)

where �S(r) =
p
2hS(r)i. The equation of motion for �S is then

d2�S

dr2
+

2

r

d�S

dr
� @V

e↵

@�S

= 0 , (16)

with the boundary conditions: limr!1 �S(r) = 0 and d�S(r)/dr|r=0

= 0. We can solve

Eq. (16) by use of a relaxation method (see, e.g., Ref. [30] for details).

Let T⇤ be the temperature at which the GWs are produced from the cosmological phase

transition. Without significant reheating, this temperature can be approximated by the

bubble nucleation temperature, TN , to be defined below. For the phase transition to develop,

at least one bubble must nucleate within the Hubble volume. We thus define TN through

the condition

�N(TN) = H4(TN) , (17)

where H(T ) = 1.66
p
g⇤(T )T 2/m

Pl

with g⇤(T ) being the relativistic degrees of freedom at

T and m
Pl

= 1.22⇥ 1019 GeV, while �N(T ) is the bubble nucleation rate per unit time per

unit volume approximately given by [31]
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From Eqs. (17) and (18), one obtains S
3

(TN)/TN ' 140� 150.

A model-independent analysis of the GWs has been done in Ref. [6] using two parameters:
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After the thermal resummation, one cannot completely gauge away the kinetic energy of

the gauge field. However, since such an energy is gauge-independent, we will neglect it in

the following discussions for simplicity. Furthermore, the critical bubble for the first-order

phase transition in the early Universe is assumed to be spherically symmetric, with the

energy functional given by
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with the boundary conditions: limr!1 �S(r) = 0 and d�S(r)/dr|r=0

= 0. We can solve

Eq. (16) by use of a relaxation method (see, e.g., Ref. [30] for details).

Let T⇤ be the temperature at which the GWs are produced from the cosmological phase

transition. Without significant reheating, this temperature can be approximated by the

bubble nucleation temperature, TN , to be defined below. For the phase transition to develop,

at least one bubble must nucleate within the Hubble volume. We thus define TN through

the condition

�N(TN) = H4(TN) , (17)

where H(T ) = 1.66
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with g⇤(T ) being the relativistic degrees of freedom at

T and m
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= 1.22⇥ 1019 GeV, while �N(T ) is the bubble nucleation rate per unit time per
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�N(T ) ' T 4

✓
S
3

(T )

2⇡T

◆
3/2

e�S3(T )/T . (18)

From Eqs. (17) and (18), one obtains S
3

(TN)/TN ' 140� 150.

A model-independent analysis of the GWs has been done in Ref. [6] using two parameters:

↵ ⌘ ✏(T⇤)

⇢
rad

(T⇤)
and � ⌘ H⇤T⇤

d

dT

✓
S
3

(T )

T

◆ ����
T=T⇤

, (19)

where

✏(T ) = �V
e↵

� T
@�V

e↵

@T
and ⇢

rad

(T ) =
⇡2

30
g⇤(T )T

4, (20)

7

phase transition strength and the GW spectrum are to the gauge-fixing parameter ⇠ using

an explicit model.
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Let T⇤ be the temperature at which the GWs are produced from the cosmological phase

transition. Without significant reheating, this temperature can be approximated by the

bubble nucleation temperature, TN , to be defined below. For the phase transition to develop,

at least one bubble must nucleate within the Hubble volume. We thus define TN through
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�N(TN) = H4(TN) , (17)

where H(T ) = 1.66
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phase transition strength and the GW spectrum are to the gauge-fixing parameter ⇠ using

an explicit model.

After the thermal resummation, one cannot completely gauge away the kinetic energy of

the gauge field. However, since such an energy is gauge-independent, we will neglect it in

the following discussions for simplicity. Furthermore, the critical bubble for the first-order

phase transition in the early Universe is assumed to be spherically symmetric, with the

energy functional given by
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with the boundary conditions: limr!1 �S(r) = 0 and d�S(r)/dr|r=0

= 0. We can solve

Eq. (16) by use of a relaxation method (see, e.g., Ref. [30] for details).

Let T⇤ be the temperature at which the GWs are produced from the cosmological phase

transition. Without significant reheating, this temperature can be approximated by the

bubble nucleation temperature, TN , to be defined below. For the phase transition to develop,

at least one bubble must nucleate within the Hubble volume. We thus define TN through

the condition

�N(TN) = H4(TN) , (17)

where H(T ) = 1.66
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with g⇤(T ) being the relativistic degrees of freedom at

T and m
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= 1.22⇥ 1019 GeV, while �N(T ) is the bubble nucleation rate per unit time per

unit volume approximately given by [31]
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- We have evaluated the gauge fixing parameter (ξ) 
dependence on GW from the 1st-order phase transitions.

- Effective potential is ξdependent.

Summary

- Gauge-inv. method with consistent thermal resummation 
is necessary to get reliable results.

- Such ξdependence can propagate to nucleation 
temperature and eventually gravitational waves.

ΩGW can change O(1) in magnitude varying ξ=0-5. 
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Thermal resummation

and subtracted in the unresummed Lagrangian as

L !

L+�m2

S|S|2 +
1

2
�m2

LZ
0µLµ⌫(i@)Z

0⌫ +
1

2
�m2

TZ
0µTµ⌫(i@)Z

0⌫
�

��m2

S|S|2 �
1

2
�m2

LZ
0µLµ⌫(i@)Z

0⌫ � 1

2
�m2

TZ
0µTµ⌫(i@)Z

0⌫ , (10)

where Tµ⌫ and Lµ⌫ are projection tensors defined by

T
00

= T
0i = Ti0 = 0 , Tij = gij � kikj

�k2

,

Lµ⌫ = Pµ⌫ � Tµ⌫ , Pµ⌫ = gµ⌫ � kµk⌫
k2

,

(11)

in the rest frame of the thermal bath, where gµ⌫ = diag(1,�1,�1,�1) and kµ is the 4-

momentum of the Z 0 boson. Note that the original Lagrangian with the added terms in

the square brackets in Eq. (10) are considered as an un-perturbed tree-level part, while the

subtracted terms on the second line are treated as the thermal couterterms that appear at

the loop order. We also note that gauge invariance of the Lagrangian is not spoiled by the

above-mentioned procedure.
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that are ⇠-independent. Note that the resummed e↵ective potential in Eq. (12) is no longer

⇠-independent because �m2

S 6= 0. Again, we will quantify how sensitive the first-order

6

Dominant thermal terms are added and subtracted in the 
Lagrangian:

where

Perturbative expansion gets worse at high T.

[N.B.] Resummed Lagrangian preserves the gauge invariance.
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e.g., scale-inv. U(1)B-L model
Impact of ξ on v/T

Q0
S = 2, ↵0 = g02/4⇡ = 0.015, mZ0 = 4.5 TeV and m⌫R1,2,3 = 1.0 TeV.

no resum ⇠ = 0 ⇠ = 1 ⇠ = 5

vS(TC)

TC

4.851

1.321
= 3.67

4.833

1.346
= 3.59

4.816

1.368
= 3.52

4.695

1.348
= 3.48

[Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]
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- TC is not onset of the PT.
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- Nucleation starts somewhat 
below TC.
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- Nucleation rate per unit time per unit volume

[A.D. Linde, NPB216 (’82) 421]

- Definition of nucleation temperature (TN)

where Ecb(T ) is the energy of the critical bubble at temperature T 2. Note that this is
a rate per unit volume. We define the nucleation temperature TN as the temperature
at which the rate of nucleation of a critical bubble within a horizon volume is equal to
the Hubble parameter at that temperature. Since the horizon scale is roughly given by
H(T )−1, the nucleation temperature is defined by3

ΓN(TN)H(TN)−3 = H(TN). (4.2)

Since the Hubble parameter at temperature T is

H(T ) =

√
8πG

3
ρ(T ) =

(
8π

3m2
P

π2

30
g∗(T )T 4

)1/2

≃ 1.66 g∗(T )1/2 T 2

mP
, (4.3)

where g∗(T ) is the effective massless degrees of freedom at T defined by

g∗(T ) =
∑

B

θ(T − mB(T ))gB +
7

8

∑

F

θ(T − mF (T ))gF , (4.4)

with gB and gF being intrinsic degrees of freedom of boson B and fermion F , respectively,
the definition of TN (4.2) is reduced to

(
Ecb(TN)

2πTN

)3/2

e−Ecb(TN )/TN = 7.59 g∗(TN)2 T 4
N

m4
P

, (4.5)

or
Ecb(TN)

TN
− 3

2
log

Ecb(TN)

TN
= 152.59 − 2 log g∗(TN) − 4 log

TN

100GeV
. (4.6)

A Derivatives of the effective potential

Here we summarize the first and second derivatives of the effective potential, which are
used in the tadpole conditions, the equations of motion and matrix elements in the relax-
ation algorithm.

A.1 tadpole conditions

The tadpole conditions are imposed in the vacuum at zero temperature.

⟨Φd⟩0 =
1√
2

(
v0d

0

)
, ⟨Φu⟩0 =

eiθ0

√
2

(
0

v0u

)
(A.1)

2In [3], the author only evaluated the contribution from translational zero modes which is proportional
to E3/2

cb , but not that from rotational zero modes and those from nonzero modes. He multiplied T 4 with the
prefactor on the dimensional ground. We expect a factor of T 3 comes from the 3-dimensional translational
zero modes, while the remaining factor of T may have its origin in the negative mode corresponding to
the instability of the critical bubble. Any way, this uncertainty in the prefactor will have small effect on
the estimation of the nucleation temperature, which is mainly determined by the exponent.

3One may think that only one bubble nucleated within a horizon volume cannot convert the whole
region into the broken phase. In this sense, this definition of nucleation temperature will give an upper
bound of temperature at which the phase transition begins to proceed.

6

Nucleation temperature

Roughly, S3(T)/T≲150 is needed for the PT.


