

On gauge-dependence of gravitational waves from 1st-order phase transitions

Eibun Senaha (ibs-CTPU) April 27, 2019@CCNU

2019 CCNU - cfa@USTC Junior Cosmology Symposium

based on

Cheng-Wei Chiang (Natl Taiwan U), E.S., arXiv: 1707.06765 (PLB)

Outline

- Introduction
 - Gauge-dependence (ξ) of the effective potential
- Impact of ξ on 1st-order phase transition in classical scale-inv. U(1) models: T_N, GW
- Summary

Introduction

- 1st-order phase transition (PT) has interesting physical implications:
 Electroweak Baryogenesis, Gravitational Waves (GW), etc.
- Mostly, effective potential is used for such calculations.

problem

- Effective potential inherently depends on gauge-fixing parameter (ξ).
- Nucleation temperature (T_N), GW can be ξ dependent.
 - Q. How (numerically) serious?

Thorny problem

Effective potential is gauge dependent!!

Jackiw, PRD9,1686 (1974)

1PI diagrams only

Because

Veff ∋

Leg corrections are needed to remove the ξ dependence.

Gauge dependence of V_{eff}

Fig. taken from H. Patel and M. Ramsey-Musolf, JHEP,07(2011)029

- Generally, VEV depends on a gauge parameter ξ
- Energies at stationary points do not depend on ξ

 $\frac{\partial V_{\text{eff}}}{\partial \xi} = C(\varphi, \xi) \frac{\partial V_{\text{eff}}}{\partial \varphi}$

(Nielsen-Fukuda-Kugo (NFK) identity)

~ an example ~

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}\Phi|^2 - V(|\Phi|^2),$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}, \quad D_{\mu}\Phi = (\partial_{\mu} - ieA_{\mu})\Phi,$$
$$V(|\Phi|^{2}) = -\nu^{2}|\Phi|^{2} + \frac{\lambda}{4}|\Phi|^{4}, \quad \Phi(x) = \frac{1}{\sqrt{2}}(v + h(x) + iG(x)).$$

gauge boson:
$$D_{\mu\nu}^{-1}(k) = (-k^2 + \bar{m}_A^2)\Pi_{\mu\nu}^T(k) + \frac{1}{\xi}(-k^2 + \xi \bar{m}_A^2)\Pi_{\mu\nu}^L(k),$$

 $\Pi_{\mu\nu}^T(k) = \left(g_{\mu\nu} - \frac{k_\mu k_\nu}{k^2}\right), \quad \Pi_{\mu\nu}^L(k) = \frac{k_\mu k_\nu}{k^2},$

NG boson: $\Delta_G^{-1}(k) = k^2 - \bar{m}_G^2 - \xi \bar{m}_A^2$

ghost: $\Delta_c^{-1}(k) = i(k^2 - \xi \bar{m}_A^2)$

~ an example ~

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}\Phi|^2 - V(|\Phi|^2),$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}, \quad D_{\mu}\Phi = (\partial_{\mu} - ieA_{\mu})\Phi,$$
$$V(|\Phi|^{2}) = -\nu^{2}|\Phi|^{2} + \frac{\lambda}{4}|\Phi|^{4}, \quad \Phi(x) = \frac{1}{\sqrt{2}}(v + h(x) + iG(x)).$$

gauge boson:
$$D_{\mu\nu}^{-1}(k) = (-k^2 + \bar{m}_A^2)\Pi_{\mu\nu}^T(k) + \underbrace{\frac{1}{\xi}}_{I}(-k^2 + \underbrace{\xi}_{I}\bar{m}_A^2)\Pi_{\mu\nu}^L(k),$$

 $\Pi_{\mu\nu}^T(k) = \left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right), \quad \Pi_{\mu\nu}^L(k) = \frac{k_{\mu}k_{\nu}}{k^2},$

NG boson: $\Delta_G^{-1}(k) = k^2 - \bar{m}_G^2 - \xi \bar{m}_A^2$ ghost: $\Delta_c^{-1}(k) = i(k^2 - \xi \bar{m}_A^2)$

e.g., Abelian-Higgs model

$$\begin{split} \mu^{\epsilon} V_1^{A+G+c}(\varphi, \xi) &= -\frac{i}{2} \mu^{\epsilon} \int \frac{d^D k}{(2\pi)^D} \bigg[(D-1) \ln(-k^2 + \bar{m}_A^2) + \ln(-k^2 + \xi \bar{m}_A^2) \\ &+ \ln(-k^2 + \xi \bar{m}_A^2) + \ln\left(1 + \frac{\bar{m}_G^2}{-k^2 + \xi \bar{m}_A^2}\right) \\ &- 2 \ln(-k^2 + \xi \bar{m}_A^2) \bigg] \\ &= -\frac{i}{2} \mu^{\epsilon} \int \frac{d^D k}{(2\pi)^D} \bigg[(D-1) \ln(-k^2 + \bar{m}_A^2) + \ln\left(1 + \frac{\bar{m}_G^2}{-k^2 + \xi \bar{m}_A^2}\right) \bigg]. \end{split}$$

$$\frac{\partial V_1(\varphi,\xi)}{\partial \xi} = C(\varphi,\xi) \frac{\partial V_0(\varphi)}{\partial \varphi}$$

e.g., Abelian-Higgs model

gauge boson

$$\begin{split} \mu^{\epsilon} V_1^{A+G+c}(\varphi, \boldsymbol{\xi}) &= -\frac{i}{2} \mu^{\epsilon} \int \frac{d^D k}{(2\pi)^D} \left[(D-1) \ln(-k^2 + \bar{m}_A^2) + \ln(-k^2 + \boldsymbol{\xi} \bar{m}_A^2) \right] \\ &+ \ln(-k^2 + \boldsymbol{\xi} \bar{m}_A^2) + \ln\left(1 + \frac{\bar{m}_G^2}{-k^2 + \boldsymbol{\xi} \bar{m}_A^2}\right) \\ &- 2 \ln(-k^2 + \boldsymbol{\xi} \bar{m}_A^2) \right] \\ &= -\frac{i}{2} \mu^{\epsilon} \int \frac{d^D k}{(2\pi)^D} \left[(D-1) \ln(-k^2 + \bar{m}_A^2) + \ln\left(1 + \frac{\bar{m}_G^2}{-k^2 + \boldsymbol{\xi} \bar{m}_A^2}\right) \right]. \end{split}$$

$$\frac{\partial V_1(\varphi,\xi)}{\partial \xi} = C(\varphi,\xi) \frac{\partial V_0(\varphi)}{\partial \varphi}$$

e.g., Abelian-Higgs model

gauge boson

$$\frac{\partial V_1(\varphi,\xi)}{\partial \xi} = C(\varphi,\xi) \frac{\partial V_0(\varphi)}{\partial \varphi}$$

e.g., Abelian-Higgs model

gauge boson

$$\begin{split} \mu^{\epsilon} V_{1}^{A+G+c}(\varphi, \boldsymbol{\xi}) &= -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2\pi)^{D}} \left[(D-1) \ln(-k^{2} + \bar{m}_{A}^{2}) + \ln(-k^{2} + \boldsymbol{\xi} \bar{m}_{A}^{2}) \right] \\ \mathbf{NG} \text{ boson } + \ln(-k^{2} + \boldsymbol{\xi} \bar{m}_{A}^{2}) + \ln\left(1 + \frac{\bar{m}_{G}^{2}}{-k^{2} + \boldsymbol{\xi} \bar{m}_{A}^{2}}\right) \\ \mathbf{ghost} &= -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2\pi)^{D}} \left[(D-1) \ln(-k^{2} + \bar{m}_{A}^{2}) + \ln\left(1 + \frac{\bar{m}_{G}^{2}}{-k^{2} + \boldsymbol{\xi} \bar{m}_{A}^{2}}\right) \right]. \end{split}$$

$$\frac{\partial V_1(\varphi,\xi)}{\partial \xi} = C(\varphi,\xi) \frac{\partial V_0(\varphi)}{\partial \varphi}$$

e.g., Abelian-Higgs model

gauge boson

$$\mu^{\epsilon} V_{1}^{A+G+c}(\varphi, \xi) = -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2\pi)^{D}} \left[(D-1) \ln(-k^{2} + \bar{m}_{A}^{2}) + \ln(-k^{2} + \xi \bar{m}_{A}^{2}) \right]$$

$$\textbf{NG boson} + \ln(-k^{2} + \xi \bar{m}_{A}^{2}) + \ln\left(1 + \frac{\bar{m}_{G}^{2}}{-k^{2} + \xi \bar{m}_{A}^{2}}\right) \right]$$

$$\textbf{ghost} = -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2\pi)^{D}} \left[(D-1) \ln(-k^{2} + \bar{m}_{A}^{2}) + \ln\left(1 + \frac{\bar{m}_{G}^{2}}{-k^{2} + \xi \bar{m}_{A}^{2}}\right) \right].$$

$$\frac{\partial V_1(\varphi,\xi)}{\partial \xi} = C(\varphi,\xi) \frac{\partial V_0(\varphi)}{\partial \varphi}$$

e.g., Abelian-Higgs model

gauge boson

$$\mu^{\epsilon} V_{1}^{A+G+c}(\varphi, \xi) = -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2\pi)^{D}} \left[(D-1) \ln(-k^{2} + \bar{m}_{A}^{2}) + \ln(-k^{2} + \xi \bar{m}_{A}^{2}) \right]$$

$$\mathbf{NG \ boson} + \ln(-k^{2} + \xi \bar{m}_{A}^{2}) + \ln\left(1 + \frac{\bar{m}_{G}^{2}}{-k^{2} + \xi \bar{m}_{A}^{2}}\right) \right]$$

$$\mathbf{ghost} = -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2\pi)^{D}} \left[(D-1) \ln(-k^{2} + \bar{m}_{A}^{2}) + \ln\left(1 + \frac{\bar{m}_{G}^{2}}{-k^{2} + \xi \bar{m}_{A}^{2}}\right) \right].$$

$$\frac{\partial V_1(\varphi,\xi)}{\partial \xi} = C(\varphi,\xi) \frac{\partial V_0(\varphi)}{\partial \varphi}$$

e.g., Abelian-Higgs model

gauge boson

$$\mu^{\epsilon} V_{1}^{A+G+c}(\varphi, \xi) = -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2\pi)^{D}} \left[(D-1) \ln(-k^{2} + \bar{m}_{A}^{2}) + \ln(-k^{2} + \xi \bar{m}_{A}^{2}) \right]$$

$$\mathbf{NG \ boson} + \ln(-k^{2} + \xi \bar{m}_{A}^{2}) + \ln\left(1 + \frac{\bar{m}_{G}^{2}}{-k^{2} + \xi \bar{m}_{A}^{2}}\right) \right]$$

$$\mathbf{ghost} = -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2\pi)^{D}} \left[(D-1) \ln(-k^{2} + \bar{m}_{A}^{2}) + \ln\left(1 + \frac{\bar{m}_{G}^{2}}{-k^{2} + \xi \bar{m}_{A}^{2}}\right) \right].$$

$$\frac{\partial V_1(\varphi,\xi)}{\partial \xi} = C(\varphi,\xi) \frac{\partial V_0(\varphi)}{\partial \varphi}$$

e.g., Abelian-Higgs model

gauge boson

$$\mu^{\epsilon} V_{1}^{A+G+c}(\varphi, \xi) = -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2\pi)^{D}} \left[(D-1) \ln(-k^{2} + \bar{m}_{A}^{2}) + \ln(-k^{2} + \xi \bar{m}_{A}^{2}) \right]$$

$$\mathbf{NG \ boson} + \ln(-k^{2} + \xi \bar{m}_{A}^{2}) + \ln\left(1 + \frac{\bar{m}_{G}^{2}}{-k^{2} + \xi \bar{m}_{A}^{2}}\right) \right]$$

$$\mathbf{ghost} = -\frac{i}{2} \mu^{\epsilon} \int \frac{d^{D} k}{(2\pi)^{D}} \left[(D-1) \ln(-k^{2} + \bar{m}_{A}^{2}) + \ln\left(1 + \frac{\bar{m}_{G}^{2}}{-k^{2} + \xi \bar{m}_{A}^{2}}\right) \right].$$

$$\frac{\partial V_1(\varphi,\xi)}{\partial \xi} = C(\varphi,\xi) \frac{\partial V_0(\varphi)}{\partial \varphi} \quad \text{Tree}$$

Plotting $V_{eff}=V_0+V_1$,

No ξ -dependence at $\frac{\partial V_0}{\partial \varphi} = 0$ but it is no longer a minimum at 1-loop level.

When 1-loop minimization condition is imposed,

 2.0×10^7 $\xi = 0$ $\xi = 50$ $.... \xi = 100$ $1.0 x 10^7$ $V_{
m eff}(arphi) \; [{
m GeV}^4]$ $0.0 x 10^{0}$ -1.0×10^7 -2.0×10^7 50100 200250300 350 400 1500 $\varphi \,[{\rm GeV}]$

 $\frac{\partial(V_0 + V_1)}{\partial\varphi} = 0$

Energy at $\phi = 246$ GeV depends on $\xi !!$

$$V_1(\varphi, \boldsymbol{\xi}; T) = \sum_i \frac{T^4}{2\pi^2} I_B(a_i^2),$$

 $I_B(a^2) = \int_0^\infty dx \ x^2 \ln\left[1 - e^{-\sqrt{x^2 + a^2}}\right].$

Using a high-T expansion of $I_B(a^2)$, one gets

where

$$\begin{split} V_1(\varphi, \boldsymbol{\xi}) + V_1(\varphi, \boldsymbol{\xi}; T) \\ &= \frac{T^2}{24} (\bar{m}_h^2 + \bar{m}_G^2 + 3\bar{m}_A^2) - \frac{T}{12\pi} \Big[(\bar{m}_h^2)^{3/2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^{3/2} + (3 - \boldsymbol{\xi}^{3/2})(\bar{m}_A^2)^{3/2} \Big] \\ &+ \frac{1}{64\pi^2} \Big[\bar{m}_h^4 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + 3\bar{m}_A^4 \left(\ln \frac{\alpha_B T^2}{\bar{\mu}^2} + \frac{2}{3} \right) - (\boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} \Big]. \end{split}$$

$$V_1(\varphi, \boldsymbol{\xi}; T) = \sum_i \frac{T^4}{2\pi^2} I_B(a_i^2),$$

$$I_B(a^2) = \int_0^\infty dx \ x^2 \ln\left[1 - e^{-\sqrt{x^2 + a^2}}\right]$$

Using a high-T expansion of $I_B(a^2)$, one gets

where

$$\begin{split} V_{1}(\varphi, \boldsymbol{\xi}) + V_{1}(\varphi, \boldsymbol{\xi}; T) \\ &= \left[\frac{T^{2}}{24} (\bar{m}_{h}^{2} + \bar{m}_{G}^{2} + 3\bar{m}_{A}^{2}) - \frac{T}{12\pi} \Big[(\bar{m}_{h}^{2})^{3/2} + (\bar{m}_{G}^{2} + \boldsymbol{\xi}\bar{m}_{A}^{2})^{3/2} + (3 - \boldsymbol{\xi}^{3/2})(\bar{m}_{A}^{2})^{3/2} \Big] \\ &+ \frac{1}{64\pi^{2}} \Big[\bar{m}_{h}^{4} \ln \frac{\alpha_{B}T^{2}}{\bar{\mu}^{2}} + (\bar{m}_{G}^{2} + \boldsymbol{\xi}\bar{m}_{A}^{2})^{2} \ln \frac{\alpha_{B}T^{2}}{\bar{\mu}^{2}} + 3\bar{m}_{A}^{4} \left(\ln \frac{\alpha_{B}T^{2}}{\bar{\mu}^{2}} + \frac{2}{3} \right) - (\boldsymbol{\xi}\bar{m}_{A}^{2})^{2} \ln \frac{\alpha_{B}T^{2}}{\bar{\mu}^{2}} \Big]. \end{split}$$

 V_{eff} at T=0 also depends on ξ except "T²-terms".

[H.Patel, M.Ramsey-Musolf, JHEP,07(2011)029]

SM case

[H.Patel, M.Ramsey-Musolf, JHEP,07(2011)029]

SM case

[H.Patel, M.Ramsey-Musolf, JHEP,07(2011)029]

SM + U(1)' w/ scale symmetry

$$\mathcal{L} = \mathcal{L}_{SM'} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + |D_{\mu}S|^2 - V(H,S)$$

$$Z'_{\mu\nu} = \partial_{\mu}Z'_{\nu} - \partial_{\nu}Z'_{\mu}, \ D_{\mu}S = (\partial_{\mu} + ig'Q'_{S}Z'_{\mu})S,$$

scalar potential

$$V(H,S) = \lambda_H (H^{\dagger}H)^2 + \lambda_{HS} H^{\dagger}H |S|^2 + \lambda_S |S|^4$$

singlet scalar field: $S(x) = \frac{1}{\sqrt{2}} (v_S + h_S(x) + iG(x))$

After U(1) is radiatively broken (<S> \neq 0), EW symmetry is broken if $\lambda_{\text{HS}} < 0$. $m_h^2 = -\lambda_{HS} v_S^2 \longrightarrow -\lambda_{HS} = m_h^2/v_S^2 = \mathcal{O}(10^{-3})$

SM + U(1)' w/ scale symmetry

$$\mathcal{L} = \mathcal{L}_{SM'} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + |D_{\mu}S|^2 - V(H,S)$$

$$Z'_{\mu\nu} = \partial_{\mu}Z'_{\nu} - \partial_{\nu}Z'_{\mu}, \ D_{\mu}S = (\partial_{\mu} + ig'Q'_{S}Z'_{\mu})S,$$

scalar potential

$$V(H,S) = \lambda_H (H^{\dagger}H)^2 + \lambda_{HS} H^{\dagger}H |S|^2 + \lambda_S |S|^4$$

singlet scalar field:
$$S(x) = \frac{1}{\sqrt{2}} (v_S + h_S(x) + iG(x))$$

After U(1) is radiatively broken (<S> \neq 0), EW symmetry is broken if $\lambda_{\text{HS}} < 0$. $m_h^2 = -\lambda_{HS} v_S^2 \longrightarrow -\lambda_{HS} = m_h^2/v_S^2 = \mathcal{O}(10^{-3})$

 ξ dependence is different from the massive U(1) model case.

$$\begin{aligned} V_{\text{eff}}(\varphi_S) &= \frac{\lambda_S}{4} \varphi_S^4 + 3 \frac{\bar{m}_{Z'}^4}{64\pi^2} \left(\ln \frac{\bar{m}_{Z'}^2}{\bar{\mu}^2} - \frac{5}{6} \right) \\ &+ \frac{\bar{m}_{G,\xi}^4}{64\pi^2} \left(\ln \frac{\bar{m}_{G,\xi}^2}{\bar{\mu}^2} - \frac{3}{2} \right) - \frac{(\xi \bar{m}_{Z'}^2)^2}{64\pi^2} \left(\ln \frac{\xi \bar{m}_{Z'}^2}{\bar{\mu}^2} - \frac{3}{2} \right), \end{aligned}$$

where $\bar{m}_{Z'}^2 = (g'Q'_S\varphi_S)^2$, $\bar{m}_{G,\xi}^2 = \lambda_S\varphi_S^2 + \xi\bar{m}_{Z'}^2$.

Minimization condition -> $\lambda_s = O(g'^4/16\pi^2)$

One gets
$$V_{\text{eff}}(\varphi_S) \simeq \frac{3\bar{m}_{Z'}^4}{64\pi^2} \left(\ln \frac{\varphi_S^2}{v_S^2} - \frac{1}{2} \right), \quad \xi \text{ independent!!}$$

- Finite-T 1-loop effective potential is also ξ independent.
- ξ dependence will appear from 2-loop order.

 ξ dependence is different from the massive U(1) model case.

$$\begin{aligned} V_{\text{eff}}(\varphi_S) &= \frac{\lambda_S}{4} \varphi_S^4 + 3 \frac{\bar{m}_{Z'}^4}{64\pi^2} \left(\ln \frac{\bar{m}_{Z'}^2}{\bar{\mu}^2} - \frac{5}{6} \right) \\ &+ \frac{\bar{m}_{G,\xi}^4}{64\pi^2} \left(\ln \frac{\bar{m}_{G,\xi}^2}{\bar{\mu}^2} - \frac{3}{2} \right) - \frac{(\xi \bar{m}_{Z'}^2)^2}{64\pi^2} \left(\ln \frac{\xi \bar{m}_{Z'}^2}{\bar{\mu}^2} - \frac{3}{2} \right), \end{aligned}$$

where $\bar{m}_{Z'}^2 = (g'Q'_S\varphi_S)^2$, $\bar{m}_{G,\xi}^2 = \lambda_S\varphi_S^2 + \xi\bar{m}_{Z'}^2$.

Minimization condition -> $\lambda_s = O(g'^4/16\pi^2)$

One gets
$$V_{\text{eff}}(\varphi_S) \simeq \frac{3\bar{m}_{Z'}^4}{64\pi^2} \left(\ln \frac{\varphi_S^2}{v_S^2} - \frac{1}{2} \right), \quad \xi \text{ independent!!}$$

- Finite-T 1-loop effective potential is also ξ independent.
- ξ dependence will appear from 2-loop order.

 ξ dependence is different from the massive U(1) model case.

$$\begin{aligned} V_{\text{eff}}(\varphi_S) &= \frac{\lambda_S}{4} \varphi_S^4 + 3 \frac{\bar{m}_{Z'}^4}{64\pi^2} \left(\ln \frac{\bar{m}_{Z'}^2}{\bar{\mu}^2} - \frac{5}{6} \right) \\ &+ \frac{\bar{m}_{G,\xi}^4}{64\pi^2} \left(\ln \frac{\bar{m}_{G,\xi}^2}{\bar{\mu}^2} - \frac{3}{2} \right) - \frac{(\xi \bar{m}_{Z'}^2)^2}{64\pi^2} \left(\ln \frac{\xi \bar{m}_{Z'}^2}{\bar{\mu}^2} - \frac{3}{2} \right), \end{aligned}$$

where $\bar{m}_{Z'}^2 = (g'Q'_S\varphi_S)^2$, $\bar{m}_{G,\xi}^2 = \lambda_S\varphi_S^2 + \xi\bar{m}_{Z'}^2$.

Minimization condition -> $\lambda_s = O(g'^4/16\pi^2)$

One gets
$$V_{\text{eff}}(\varphi_S) \simeq \frac{3\bar{m}_{Z'}^4}{64\pi^2} \left(\ln \frac{\varphi_S^2}{v_S^2} - \frac{1}{2} \right), \quad \xi \text{ independent!!}$$

- Finite-T 1-loop effective potential is also ξ independent.
- ξ dependence will appear from 2-loop order.

At high T

Prescription

e.g. NG boson $\bar{m}_{G,\xi}^2
ightarrow \bar{m}_{G,\xi}^2 + \Delta m_S^2$ to leading order: $\Delta m_S^2 = \frac{(g'Q'_S)^2}{4}T^2$

$$\begin{aligned} V_{\text{eff}}(\varphi_S;T) &= \frac{(\boldsymbol{\xi}\bar{m}_{Z'}^2 + \Delta m_S^2)^2}{64\pi^2} \left(\ln \frac{\boldsymbol{\xi}\bar{m}_{Z'}^2 + \Delta m_S^2}{\bar{\mu}^2} - \frac{3}{2} \right) - \frac{(\boldsymbol{\xi}\bar{m}_{Z'}^2)^2}{64\pi^2} \left(\ln \frac{\boldsymbol{\xi}\bar{m}_{Z'}^2}{\bar{\mu}^2} - \frac{3}{2} \right) \\ &+ \frac{T^4}{2\pi^2} \left[I_B \left(\frac{\boldsymbol{\xi}\bar{m}_{Z'}^2 + \Delta m_S^2}{T^2} \right) - I_B \left(\frac{\boldsymbol{\xi}\bar{m}_{Z'}^2}{T^2} \right) \right]. \end{aligned}$$

where I_B is a 1-loop thermal function.

 V_{eff} is no longer ξ independent due to $\Delta m_S^2 \neq 0$

At high T

Prescription

 g^2 ~ g^2T^2

e.g. NG boson $\bar{m}_{G,\xi}^2 \to \bar{m}_{G,\xi}^2 + \Delta m_S^2$

to leading order: $\Delta m_S^2 = \frac{(g'Q'_S)^2}{\Lambda}T^2$

$$\begin{aligned} V_{\text{eff}}(\varphi_S;T) &= \frac{(\boldsymbol{\xi}\bar{m}_{Z'}^2 + \Delta m_S^2)^2}{64\pi^2} \left(\ln \frac{\boldsymbol{\xi}\bar{m}_{Z'}^2 + \Delta m_S^2}{\bar{\mu}^2} - \frac{3}{2} \right) - \frac{(\boldsymbol{\xi}\bar{m}_{Z'}^2)^2}{64\pi^2} \left(\ln \frac{\boldsymbol{\xi}\bar{m}_{Z'}^2}{\bar{\mu}^2} - \frac{3}{2} \right) \\ &+ \frac{T^4}{2\pi^2} \left[I_B \left(\frac{\boldsymbol{\xi}\bar{m}_{Z'}^2 + \Delta m_S^2}{T^2} \right) - I_B \left(\frac{\boldsymbol{\xi}\bar{m}_{Z'}^2}{T^2} \right) \right]. \end{aligned}$$

where I_B is a 1-loop thermal function.

 V_{eff} is no longer ξ independent due to $\Delta m_S^2 \neq 0$

Gravitational Waves from 1st-order EWPT

GWs are induced by the 1st-order EWPT.

Sources of GW

(1) Bubble collisions,(2) Sound waves,(3) Turbulence

See Ref. [C.Caprini et al, 1512.06239(JCAP)]

2 important parameters: [Grojean, Servant, hep-ph/0607107(PRD)] latent heat (α), duration of PT (β)

 $\alpha \equiv \frac{\epsilon(T_*)}{\rho_{\rm rad}(T_*)} \quad \text{and} \quad \beta \equiv H_* T_* \frac{d}{dT} \left(\frac{S_3(T)}{T} \right) \Big|_{T=T_*} , \quad \epsilon(T) = \Delta V_{\rm eff} - T \frac{\partial \Delta V_{\rm eff}}{\partial T} \quad \text{and} \quad \rho_{\rm rad}(T) = \frac{\pi^2}{30} g_*(T) T^4,$

Gravitational Waves from 1st-order EWPT

[C.Caprini et al, 1512.06239(JCAP)]

$$\Omega_{\rm GW}h^2 = \Omega_{\rm col}h^2 + \Omega_{\rm sw}h^2 + \Omega_{\rm turb}h^2$$

Dominant source is sound waves:

$$\Omega_{\rm sw}h^{2}(f) = 2.65 \times 10^{-6}\tilde{\beta}^{-1} \left(\frac{\kappa_{v}\alpha}{1+\alpha}\right)^{2} \left(\frac{100}{g_{*}}\right)^{1/3} v_{w} \left(\frac{f}{f_{\rm sw}}\right)^{3} \left(\frac{7}{4+3(f/f_{\rm sw})^{2}}\right)^{7/2},$$

$$f_{\rm sw} = 1.9 \times 10^{-2} \text{ mHz } \frac{\tilde{\beta}}{v_{w}} \left(\frac{T_{*}}{100 \text{ GeV}}\right) \left(\frac{g_{*}}{100}\right)^{1/6}, \quad \tilde{\beta} = \frac{\beta}{H_{*}}$$

$$\kappa_{v} \simeq \alpha/(0.73 + 0.083\sqrt{\alpha} + \alpha) \text{ for } v_{w} \simeq 1.$$

- Most calculations of $\alpha \& \beta$ in the literature depends on ξ .
- How much ξ dependence can affect GW?

[Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]

 $Q'_S = 2, \ \alpha' = g'^2/4\pi = 0.015, \ m_{Z'} = 4.5 \text{ TeV} \text{ and } m_{\nu_{R1,2,3}} = 1.0 \text{ TeV}.$

$$S_3 = 4\pi \int_0^\infty dr \ r^2 \left[\frac{1}{2} \left(\frac{d\phi_S}{dr} \right)^2 + V_{\text{eff}}(\phi_S; T) \right]$$

$$\frac{d^2\phi_S}{dr^2} + \frac{2}{r}\frac{d\phi_S}{dr} - \frac{\partial V_{\text{eff}}}{\partial\phi_S} = 0$$

	no resum	$\xi = 0$	$\xi = 1$	$\xi = 5$
$v_S(T_*)/T_*$	5.181/0.328 = 15.8	5.181/0.368 = 14.1	5.180/0.405 = 12.8	5.163/0.490 = 10.5
α	2.27	1.44	0.99	0.48
$ ilde{eta}$	89.4	97.5	105.4	135.0

[Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]

 $Q'_S = 2, \ \alpha' = g'^2/4\pi = 0.015, \ m_{Z'} = 4.5 \text{ TeV} \text{ and } m_{\nu_{R1,2,3}} = 1.0 \text{ TeV}.$

$$S_{3} = 4\pi \int_{0}^{\infty} dr \ r^{2} \left[\frac{1}{2} \left(\frac{d\phi_{S}}{dr} \right)^{2} + V_{\text{eff}}(\phi_{S}; T) \right]$$

$$\frac{d^2\phi_S}{dr^2} + \frac{2}{r}\frac{d\phi_S}{dr} - \frac{\partial V_{\text{eff}}}{\partial\phi_S} = 0$$

	no resum	$\xi = 0$	$\xi = 1$	$\xi = 5$
$v_S(T_*)/T_*$	5.181/0.328 = 15.8	5.181/0.368 = 14.1	5.180/0.405 = 12.8	5.163/0.490 = 10.5
α	2.27	1.44	0.99	0.48
$ ilde{eta}$	89.4	97.5	105.4	135.0

[Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]

 $Q'_S = 2, \ \alpha' = g'^2/4\pi = 0.015, \ m_{Z'} = 4.5 \text{ TeV} \text{ and } m_{\nu_{R1,2,3}} = 1.0 \text{ TeV}.$

$$S_{3} = 4\pi \int_{0}^{\infty} dr \ r^{2} \left[\frac{1}{2} \left(\frac{d\phi_{S}}{dr} \right)^{2} + V_{\text{eff}}(\phi_{S}; T) \right]$$

$$\frac{d^2\phi_S}{dr^2} + \frac{2}{r}\frac{d\phi_S}{dr} - \frac{\partial V_{\text{eff}}}{\partial\phi_S} = 0$$

	no resum	$\xi = 0$	$\xi = 1$	$\xi = 5$
$v_S(T_*)/T_*$	5.181/0.328 = 15.8	5.181/0.368 = 14.1	5.180/0.405 = 12.8	5.163/0.490 = 10.5
α	2.27	1.44	0.99	0.48
$ ilde{eta}$	89.4	97.5	105.4	135.0

[Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]

 $Q'_S = 2, \ \alpha' = g'^2/4\pi = 0.015, \ m_{Z'} = 4.5 \text{ TeV} \text{ and } m_{\nu_{R1,2,3}} = 1.0 \text{ TeV}.$

$$S_{3} = 4\pi \int_{0}^{\infty} dr \ r^{2} \left[\frac{1}{2} \left(\frac{d\phi_{S}}{dr} \right)^{2} + V_{\text{eff}}(\phi_{S}; T) \right]$$

$$d^{2}\phi \qquad 2 \ d\phi \qquad \partial V$$

$$\frac{d^2\phi_S}{dr^2} + \frac{2}{r}\frac{d\phi_S}{dr} - \frac{\partial V_{\text{eff}}}{\partial\phi_S} = 0$$

	no resum	$\xi = 0$	$\xi = 1$	$\xi = 5$
$v_S(T_*)/T_*$	5.181/0.328 = 15.8	5.181/0.368 = 14.1	5.180/0.405 = 12.8	5.163/0.490 = 10.5
α	2.27	1.44	0.99	0.48
$ ilde{eta}$	89.4	97.5	105.4	135.0

 ξ dependence of V_{eff} propagates to GW spectrum significantly!

Summary

- We have evaluated the gauge fixing parameter (ξ) dependence on GW from the 1st-order phase transitions.
- Effective potential is ξ dependent.
- Such ξ dependence can propagate to nucleation temperature and eventually gravitational waves. $\Omega_{\rm GW}$ can change O(1) in magnitude varying ξ =0-5.
- Gauge-inv. method with consistent thermal resummation is necessary to get reliable results.

Using a high-T expansion, one gets

$$\begin{split} V_1(\varphi, \boldsymbol{\xi}) &+ V_1(\varphi, \boldsymbol{\xi}; T) \\ &= \frac{T^2}{24} (\bar{m}_h^2 + \bar{m}_G^2 + 3\bar{m}_A^2) - \frac{T}{12\pi} \Big[(\bar{m}_h^2)^{3/2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^{3/2} + (3 - \boldsymbol{\xi}^{3/2})(\bar{m}_A^2)^{3/2} \Big] \\ &+ \frac{1}{64\pi^2} \Big[\bar{m}_h^4 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + 3\bar{m}_A^4 \left(\ln \frac{\alpha_B T^2}{\bar{\mu}^2} + \frac{2}{3} \right) - (\boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} \Big]. \end{split}$$

$$V_{\text{eff}}(\varphi, \xi; T) = V_0(\varphi) + V_1(\varphi, \xi) + V_1(\varphi, \xi; T)$$

= $D(T^2 - T_0^2)\varphi^2 - ET(\varphi^2)^{3/2} + \frac{\lambda_T}{4}\varphi^4$

 φ

Using a high-T expansion, one gets

$$\begin{split} V_1(\varphi, \boldsymbol{\xi}) + V_1(\varphi, \boldsymbol{\xi}; T) \\ = & \left[\frac{T^2}{24} (\bar{m}_h^2 + \bar{m}_G^2 + 3\bar{m}_A^2) - \frac{T}{12\pi} \Big[(\bar{m}_h^2)^{3/2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^{3/2} + (3 - \boldsymbol{\xi}^{3/2})(\bar{m}_A^2)^{3/2} \Big] \\ &+ \frac{1}{64\pi^2} \Big[\bar{m}_h^4 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + 3\bar{m}_A^4 \left(\ln \frac{\alpha_B T^2}{\bar{\mu}^2} + \frac{2}{3} \right) - (\boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} \Big]. \end{split}$$

"T²-terms" are gauge-independent.

$$V_{\text{eff}}(\varphi, \boldsymbol{\xi}; T) = V_0(\varphi) + V_1(\varphi, \boldsymbol{\xi}) + V_1(\varphi, \boldsymbol{\xi}; T)$$
$$= D(T^2 - T_0^2)\varphi^2 - ET(\varphi^2)^{3/2} + \frac{\lambda_T}{4}\varphi^4$$

Using a high-T expansion, one gets

$$\begin{split} &V_1(\varphi, \boldsymbol{\xi}) + V_1(\varphi, \boldsymbol{\xi}; T) \\ = & \left[\frac{T^2}{24} (\bar{m}_h^2 + \bar{m}_G^2 + 3\bar{m}_A^2) - \frac{T}{12\pi} \Big[(\bar{m}_h^2)^{3/2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^{3/2} + (3 - \boldsymbol{\xi}^{3/2})(\bar{m}_A^2)^{3/2} \Big] \\ &+ \frac{1}{64\pi^2} \Big[\bar{m}_h^4 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + 3\bar{m}_A^4 \left(\ln \frac{\alpha_B T^2}{\bar{\mu}^2} + \frac{2}{3} \right) - (\boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} \Big]. \end{split}$$

"T²-terms" are gauge-independent. ξ terms disappear if $\bar{m}_G^2 = 0$ $V_{\rm eff}(\varphi, \xi; T) = V_0(\varphi) + V_1(\varphi, \xi) + V_1(\varphi, \xi; T)$

$$= V_{0}(\varphi) + V_{1}(\varphi, \xi) + V_{1}(\varphi, \xi; I)$$

$$= D(T^{2} - T_{0}^{2})\varphi^{2} - ET(\varphi^{2})^{3/2} + \frac{\lambda_{T}}{4}\varphi^{4}$$

Using a high-T expansion, one gets

$$\begin{split} &V_1(\varphi, \boldsymbol{\xi}) + V_1(\varphi, \boldsymbol{\xi}; T) \\ = & \left[\frac{T^2}{24} (\bar{m}_h^2 + \bar{m}_G^2 + 3\bar{m}_A^2) - \frac{T}{12\pi} \Big[(\bar{m}_h^2)^{3/2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^{3/2} + (3 - \boldsymbol{\xi}^{3/2})(\bar{m}_A^2)^{3/2} \Big] \\ &+ \frac{1}{64\pi^2} \Big[\bar{m}_h^4 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + 3\bar{m}_A^4 \left(\ln \frac{\alpha_B T^2}{\bar{\mu}^2} + \frac{2}{3} \right) - (\boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} \Big]. \end{split}$$

"T²-terms" are gauge-independent. ξ terms disappear if $\bar{m}_G^2=0$

$$V_{\text{eff}}(\varphi, \boldsymbol{\xi}; T) = V_0(\varphi) + V_1(\varphi, \boldsymbol{\xi}) + V_1(\varphi, \boldsymbol{\xi}; T)$$
$$= D(T^2 - T_0^2)\varphi^2 - ET(\varphi^2)^{3/2} + \frac{\lambda_T}{4}\varphi^4$$

Using a high-T expansion, one gets

$$\begin{split} &V_1(\varphi, \boldsymbol{\xi}) + V_1(\varphi, \boldsymbol{\xi}; T) \\ = & \left[\frac{T^2}{24} (\bar{m}_h^2 + \bar{m}_G^2 + 3\bar{m}_A^2) - \frac{T}{12\pi} \Big[(\bar{m}_h^2)^{3/2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^{3/2} + (3 - \boldsymbol{\xi}^{3/2})(\bar{m}_A^2)^{3/2} \Big] \\ &+ \frac{1}{64\pi^2} \Big[\bar{m}_h^4 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + 3\bar{m}_A^4 \left(\ln \frac{\alpha_B T^2}{\bar{\mu}^2} + \frac{2}{3} \right) - (\boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} \Big]. \end{split}$$

"T²-terms" are gauge-independent. ξ terms disappear if $\bar{m}_G^2=0$

$$V_{\text{eff}}(\varphi, \boldsymbol{\xi}; T) = V_0(\varphi) + V_1(\varphi, \boldsymbol{\xi}) + V_1(\varphi, \boldsymbol{\xi}; T)$$
$$= D(T^2 - T_0^2)\varphi^2 - ET(\varphi^2)^{3/2} + \frac{\lambda_T}{4}\varphi^4$$

Using a high-T expansion, one gets

$$\begin{split} &V_1(\varphi, \boldsymbol{\xi}) + V_1(\varphi, \boldsymbol{\xi}; T) \\ = & \left[\frac{T^2}{24} (\bar{m}_h^2 + \bar{m}_G^2 + 3\bar{m}_A^2) - \frac{T}{12\pi} \Big[(\bar{m}_h^2)^{3/2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^{3/2} + (3 - \boldsymbol{\xi}^{3/2})(\bar{m}_A^2)^{3/2} \Big] \\ &+ \frac{1}{64\pi^2} \Big[\bar{m}_h^4 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + (\bar{m}_G^2 + \boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} + 3\bar{m}_A^4 \left(\ln \frac{\alpha_B T^2}{\bar{\mu}^2} + \frac{2}{3} \right) - (\boldsymbol{\xi}\bar{m}_A^2)^2 \ln \frac{\alpha_B T^2}{\bar{\mu}^2} \Big]. \end{split}$$

"T²-terms" are gauge-independent. ξ terms disappear if $\bar{m}_G^2=0$

$$V_{\text{eff}}(\varphi, \boldsymbol{\xi}; T) = V_0(\varphi) + V_1(\varphi, \boldsymbol{\xi}) + V_1(\varphi, \boldsymbol{\xi}; T)$$
$$= D(T^2 - T_0^2)\varphi^2 - ET(\varphi^2)^{3/2} + \frac{\lambda_T}{4}\varphi^4$$

Using a high-T expansion, one gets

$$\begin{split} V_{1}(\varphi, \boldsymbol{\xi}) + V_{1}(\varphi, \boldsymbol{\xi}; T) \\ &= \boxed{\frac{T^{2}}{24}(\bar{m}_{h}^{2} + \bar{m}_{G}^{2} + 3\bar{m}_{A}^{2})} - \frac{T}{12\pi} \Big[(\bar{m}_{h}^{2})^{3/2} + (\bar{m}_{G}^{2} + \boldsymbol{\xi}\bar{m}_{A}^{2})^{3/2} + (3 - \boldsymbol{\xi}^{3/2})(\bar{m}_{A}^{2})^{3/2} \Big] \\ &+ \frac{1}{64\pi^{2}} \Big[\bar{m}_{h}^{4} \ln \frac{\alpha_{B}T^{2}}{\bar{\mu}^{2}} + (\bar{m}_{G}^{2} + \boldsymbol{\xi}\bar{m}_{A}^{2})^{2} \ln \frac{\alpha_{B}T^{2}}{\bar{\mu}^{2}} + 3\bar{m}_{A}^{4} \left(\ln \frac{\alpha_{B}T^{2}}{\bar{\mu}^{2}} + \frac{2}{3} \right) - (\boldsymbol{\xi}\bar{m}_{A}^{2})^{2} \ln \frac{\alpha_{B}T^{2}}{\bar{\mu}^{2}} \Big]. \end{split}$$

"T²-terms" are gauge-independent. ξ terms disappear if $\bar{m}_G^2=0$

2E

 v_C

 T_C

$$V_{\text{eff}}(\varphi, \boldsymbol{\xi}; T) = V_0(\varphi) + V_1(\varphi, \boldsymbol{\xi}) + V_1(\varphi, \boldsymbol{\xi}; T)$$
$$= D(T^2 - T_0^2)\varphi^2 - ET(\varphi^2)^{3/2} + \frac{\lambda_T}{4}\varphi^4$$

[Many refs: see, e.g., Parwani (92), Buchmüller et al (93), Chiku, Hatsuda (98), etc.] Perturbative expansion gets worse at high T. $g^{2}T^{2} \rightarrow \#n$ sub-bubbles $g^{2}T^{2} \rightarrow g^{2}T^{2}$ $g^{2}T^{2} \rightarrow m$ $\sim \frac{g^{4}T^{3}}{m} \left(\frac{g^{2}T^{2}}{m^{2}}\right)^{n-1}$

Dominant thermal terms are added and subtracted in the Lagrangian:

$$\mathcal{L}_{B} = \mathcal{L}_{R} + \mathcal{L}_{CT} \rightarrow \left[\mathcal{L}_{R} + \Delta m_{S}^{2} |S|^{2} + \frac{1}{2} \Delta m_{L}^{2} Z'^{\mu} L_{\mu\nu}(i\partial) Z'^{\nu} + \frac{1}{2} \Delta m_{T}^{2} Z'^{\mu} T_{\mu\nu}(i\partial) Z'^{\nu} \right] \\ + \left[\mathcal{L}_{CT} - \Delta m_{S}^{2} |S|^{2} - \frac{1}{2} \Delta m_{L}^{2} Z'^{\mu} L_{\mu\nu}(i\partial) Z'^{\nu} - \frac{1}{2} \Delta m_{T}^{2} Z'^{\mu} T_{\mu\nu}(i\partial) Z'^{\nu} \right]$$

where $T_{00} = T_{0i} = T_{i0} = 0$, $T_{ij} = g_{ij} - \frac{k_i k_j}{-k^2}$, $L_{\mu\nu} = P_{\mu\nu} - T_{\mu\nu}$, $P_{\mu\nu} = g_{\mu\nu} - \frac{k_\mu k_\nu}{k^2}$,

[N.B.] Resummed Lagrangian preserves the gauge invariance.

[Many refs: see, e.g., Parwani (92), Buchmüller et al (93), Chiku, Hatsuda (98), etc.] Perturbative expansion gets worse at high T.

 $\begin{array}{c} g^2 \end{array} \sim g^2 T^2 \quad \begin{array}{c} g^2 T^2 \\ g^2 T^2 \end{array} \begin{array}{c} m \\ g^2 T^2 \end{array} \sim \frac{g^4 T^3}{m} \left(\frac{g^2 T^2}{m^2} \right)^{n-1} \end{array}$

. #n sub-bubbles

Dominant thermal terms are added and subtracted in the Lagrangian: new unperturbed part

$$\begin{split} \mathcal{L}_{B} &= \mathcal{L}_{R} + \mathcal{L}_{CT} \rightarrow \left[\mathcal{L}_{R} + \Delta m_{S}^{2} |S|^{2} + \frac{1}{2} \Delta m_{L}^{2} Z'^{\mu} L_{\mu\nu}(i\partial) Z'^{\nu} + \frac{1}{2} \Delta m_{T}^{2} Z'^{\mu} T_{\mu\nu}(i\partial) Z'^{\nu} \right] \\ &+ \left[\mathcal{L}_{CT} - \Delta m_{S}^{2} |S|^{2} - \frac{1}{2} \Delta m_{L}^{2} Z'^{\mu} L_{\mu\nu}(i\partial) Z'^{\nu} - \frac{1}{2} \Delta m_{T}^{2} Z'^{\mu} T_{\mu\nu}(i\partial) Z'^{\nu} \right] \\ &\text{where} \qquad T_{00} = T_{0i} = T_{i0} = 0 \ , \quad T_{ij} = g_{ij} - \frac{k_{i} k_{j}}{-k^{2}} \ , \end{split}$$

$$L_{\mu\nu} = P_{\mu\nu} - T_{\mu\nu} , \quad P_{\mu\nu} = g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2} ,$$

[N.B.] Resummed Lagrangian preserves the gauge invariance.

[Many refs: see, e.g., Parwani (92), Buchmüller et al (93), Chiku, Hatsuda (98), etc.] Perturbative expansion gets worse at high T.

 $g^2
ight) \sim g^2 T^2 \qquad g^2 T^2
ightarrow m
ightarrow
ightarrow \sim rac{g^4 T^3}{m} \left(rac{g^2 T^2}{m^2}
ight)^{n-1}$

. #n sub-bubbles

Dominant thermal terms are added and subtracted in the Lagrangian: new unperturbed part

$$\begin{split} \mathcal{L}_{B} &= \mathcal{L}_{R} + \mathcal{L}_{CT} \rightarrow \left[\mathcal{L}_{R} + \Delta m_{S}^{2} |S|^{2} + \frac{1}{2} \Delta m_{L}^{2} Z'^{\mu} L_{\mu\nu}(i\partial) Z'^{\nu} + \frac{1}{2} \Delta m_{T}^{2} Z'^{\mu} T_{\mu\nu}(i\partial) Z'^{\nu} \right] \\ &+ \left[\mathcal{L}_{CT} - \Delta m_{S}^{2} |S|^{2} - \frac{1}{2} \Delta m_{L}^{2} Z'^{\mu} L_{\mu\nu}(i\partial) Z'^{\nu} - \frac{1}{2} \Delta m_{T}^{2} Z'^{\mu} T_{\mu\nu}(i\partial) Z'^{\nu} \right] \\ &\text{where} \quad T_{00} = T_{0i} = T_{i0} = 0 , \quad T_{ij} = g_{ij} - \frac{k_{i} k_{j}}{-k^{2}} , \text{ new counterterm} \\ &\quad L_{\mu\nu} = P_{\mu\nu} - T_{\mu\nu} , \quad P_{\mu\nu} = g_{\mu\nu} - \frac{k_{\mu} k_{\nu}}{k^{2}} , \end{split}$$

[N.B.] Resummed Lagrangian preserves the gauge invariance.

Impact of ξ on v/T

e.g., scale-inv. U(1)_{B-L} model [Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]

 $Q'_S = 2, \ \alpha' = g'^2/4\pi = 0.015, \ m_{Z'} = 4.5 \text{ TeV} \text{ and } m_{\nu_{R1,2,3}} = 1.0 \text{ TeV}.$

	no resum	$\xi = 0$	$\xi = 1$	$\xi = 5$
$\frac{v_S(T_C)}{T_C}$	$\frac{4.851}{1.321} = 3.67$	$\frac{4.833}{1.346} = 3.59$	$\frac{4.816}{1.368} = 3.52$	$\frac{4.695}{1.348} = 3.48$

Impact of ξ on v/T

e.g., scale-inv. U(1)_{B-L} model [Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]

 $Q'_S = 2, \ \alpha' = g'^2/4\pi = 0.015, \ m_{Z'} = 4.5 \text{ TeV} \text{ and } m_{\nu_{R1,2,3}} = 1.0 \text{ TeV}.$

	no resum	$\xi = 0$	$\xi = 1$	$\xi = 5$
$\frac{v_S(T_C)}{T_C}$	$\frac{4.851}{1.321} = 3.67$	$\frac{4.833}{1.346} = 3.59$	$\frac{4.816}{1.368} = 3.52$	$\frac{4.695}{1.348} = 3.48$

Impact of ξ on v/T

e.g., scale-inv. U(1)_{B-L} model [Cheng-Wei Chiang, E.S., 1707.06765 (PLB)]

 $Q'_S = 2, \ \alpha' = g'^2/4\pi = 0.015, \ m_{Z'} = 4.5 \text{ TeV} \text{ and } m_{\nu_{R1,2,3}} = 1.0 \text{ TeV}.$

	no resum	$\xi = 0$	$\xi = 1$	$\xi = 5$
$\frac{v_S(T_C)}{T_C}$	$\frac{4.851}{1.321} = 3.67$	$\frac{4.833}{1.346} = 3.59$	$\frac{4.816}{1.368} = 3.52$	$\frac{4.695}{1.348} = 3.48$

Onset of PT

- T_c is not onset of the PT.

- Nucleation starts somewhat below T_c.

"Not all bubbles can grow"

expand? or shrink?

volume energy vs. surface energy

 \propto (radius)³ \propto (radius)²

 $V_{\rm eff}$ T=Tc0 $T = T_N$ 50250300 150200100 φ [GeV]

There is a critical value of radius -> critical bubble

Nucleation temperature

- Nucleation rate per unit time per unit volume

$$\Gamma_N(T) \simeq T^4 \left(rac{S_3(T)}{2\pi T}
ight)^{3/2} e^{-rac{S_3(T)}{T}/T}$$
 [A.D. Line

[A.D. Linde, NPB216 ('82) 421]

 $S_3(T)$: energy of the critical bubble at T

- Definition of nucleation temperature (T_N) horizon scale $\simeq H(T)^{-1}$

$$\Gamma_N(T_N)H(T_N)^{-3} = H(T_N)$$

$$\frac{S_3(T_N)}{T_N} - \frac{3}{2} \ln\left(\frac{S_3(T_N)}{T_N}\right) = 152.59 - 2 \ln g_*(T_N) - 4 \ln\left(\frac{T_N}{100 \text{ GeV}}\right)$$

Roughly, $S_3(T)/T \leq 150$ is needed for the PT.